Reg. No. :

Maximum: 100 Marks

Question Paper Code: 31402

B.E /B.Tech. DEGREE EXAMINATION, NOVEMBER 2015

Fourth Semester

Civil Engineering

01UMA422 - NUMERICAL METHODS

(Common to Electrical and Electronics Engineering, Electronics and Instrumentation Engineering and Instrumentation and Control Engineering)

(Regulation 2013)

Duration: Three hours

Answer ALL Questions

PART A - (10 x 2 = 20 Marks)

- 1. When is the convergence of an iterative method for solving the equation f(x) = 0 said to be (i) linear (ii) quadratic.
- 2. State the condition of convergence of Newton-Rapson method.
- 3. Give two indirect methods to solve a system of linear equations.
- 4. What do you mean by 'diagonally dominant'?
- 5. Define interpolation.
- 6. State Lagrange's interpolation formula.
- 7. State trapezoidal rule to evaluate $\int_{x_0}^{x_n} f(x) dx$.
- 8. What is the condition for Simpson's 3/8 rule and state the formula?
- 9. What do you mean by curve fitting?
- 10. State the principle of least squares.

PART - B ($5 \times 16 = 80$ Marks)

- 11. (a) (i) Find the positive root of the equation $3x^3 + 5x 40 = 0$, correct to two decimals, using bisection method. (8)
 - (ii) Find the root of the equation $e^x = 2x + 1$, correct to four decimals, using Newton-Rapson method. (8)

Or

- (b) (i) Find the root of the equation $\sin x \cosh x + 1 = 0$, correct to four decimals, using Regula Falsi method. The root lies between 1 and 2. (8)
 - (ii) Discuss the advantages and disadvantages about some iterative methods. (8)
- 12. (a) (i) Solve the following system of equations by Gauss elimination method 10x-2y+3z=23, 2x+10y-5z=-33, 3x-4y+10z=41. (8)
 - (ii) Find the numerically largest Eigen value of $\begin{pmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{pmatrix}$ by power method. (8)

Or

- (b) (i) Solve the following equations by Gauss-Siedel method 4x+2y+z=14, x+5y-z=10, x+y+8z=20. (8)
 - (ii) Using Gauss-Jordan method, find the inverse of the matrix $\begin{pmatrix} 2 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 3 & 5 \end{pmatrix}$ (8)
- 13. (a) (i) Using Lagrange's interpolation formula, find the third degree polynomial f(x) satisfying the following data: (8)

Х	1	3	5	7
У	24	120	336	720

(ii) From the following table, compute y (1.5) and y'(1) using cubic spline. (8)

X	1	2	3
У	-8	-1	18

- (b) (i) Using Newton's divided difference formula, find u(3) given u(1)=-26, u(2)=12, u(4)=256, u(6)=844. (8)
 - (ii) Using Newton's forward interpolation formula, find the polynomial f(x) satisfying the following data and hence find y(5). (8)

x	4	6	8	10
У	1	3	8	10

14. (a) (i) Evaluate
$$\int_{0}^{6} \frac{dx}{1+x^2}$$
 by Simpson's 3/8 rule and also check the result by actual integration. (8)

(ii) Evaluate $\int_{0}^{2} \frac{dx}{x^{2}+4}$ using Romberg's method and hence obtain an approximate value for π . (8)

Or

(b) (i) Compute first and second derivative of f(3) for the following data using difference table (8)

Х	3.0	3.2	3.4	3.6	3.8	4.0
<i>f</i> (x)	-14	-10.032	-5.296	-0.256	-6.672	14

- (ii) Evaluate $\int_{0}^{1} \int_{1}^{2} \frac{2xy}{(1+x^2)(1+y^2)} dxdy \text{ using Trapezoidal rule with } h=k=0.25.$ (8)
- 15. (a) (i) Find the equation of the best fitting straight line to the following data by method of group averages: (8)

X	0	5	10	15	20	25	30
У	10	14	19	25	31	36	39

(ii) Fit a curve of the form $y = ae^{-bx}$ for the following data by the method of moments.

1	0)
	О)

X	0	2	4	6	8	10
У	65	58	52	47	42	37

Or

(b) (i) Fit a straight line to the following data by the method of least squares: (8)

X	3.4	4.3	5.4	6.7	8.7	10.6
у	4.5	5.8	6.8	8.1	10.5	12.7

`

(ii) The following table gives the boiling points (y) of several members of a homologous series of hydrocarbons with their molecular weights (x). Fit the curve of the form $y=ax^b$ by using method of group averages. (8)

x	58	72	86	100	114	128	142
у	0.6	36.2	69	94.8	124.6	150.6	174