Reg. No. :

Question Paper Code: 31301

B.E. / B.Tech. DEGREE EXAMINATION, NOVEMBER 2015

Third Semester

Civil Engineering

01UMA321 - TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to ALL branches)

(Regulation 2013)

Duration: Three hours

Answer ALL Questions

Maximum: 100 Marks

PART A - (10 x 2 = 20 Marks)

- 1. State the Dirichlet's conditions for the existence of a Fourier series.
- 2. If the Fourier series of the function $f(x) = x + x^2$ in the interval $-\pi \le x \le \pi$ is $\frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \left[\frac{4}{n^2} \cos nx - \frac{2}{n} \sin nx \right]$, then find the value of the infinite series $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$
- 3. Prove that if F(s) is the Fourier transform of f(x), then $F\{f(x-a)\} = e^{isa} F(s)$.
- 4. Find Fourier cosine transform of $e^{-ax} \cos ax$.
- 5. Find *Z* transform of a^n .
- 6. State convolution theorem of *Z*-transform.
- 7. State any two laws assumed to derive the one dimensional wave equation.
- 8. When the ends of a rod length 20cm are maintained at the temperature $10^{\circ}c$ and $20^{\circ}c$ respectively until steady state is prevail. Determine the steady state temperature of the rod.

- 9. Obtain the finite difference scheme for the difference equations $2\frac{d^2y}{dx^2} + y = 5$.
- 10. Write down the diagonal five point formula in Laplace equation?

11. (a) (i) Obtain the Fourier series for $f(x) = (l - x)^2$ in (0, 2l) and hence deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$. (8)

(ii) Find the half range cosine series of $f(x) = x sinx in(0, \pi)$. (8)

Or

- (b) (i) Find the half-range sine series of f(x) = l x in (0, l) and hence find the value of the series $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$ (8)
 - (ii) Find the Fourier series expansion of period 2π for the function y = f(x) which is defined in (0, 2π) by means of the table value given below. Find the series up to second harmonic. (8)

X	0	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	π	$\frac{4\pi}{3}$	$\frac{5\pi}{3}$	2π
Y	1.0	1.4	1.9	1.7	1.5	1.2	1.0

12. (a) (i) Find the Fourier transform of f(x) is defined as $f(x) = \begin{cases} a^2 - x^2 & \text{if } |x| < a \\ 0 & otherwise \end{cases}$ Hence evaluate $\int_0^\infty \left(\frac{\sin t - t \cos t}{t^3}\right)^2 dt$. (8)
(ii) Show that $e^{-a^2x^2}$ is self – reciprocal with respect to Fourier transform, when

$$a = \frac{1}{\sqrt{2}} \quad . \tag{8}$$

Or

(b) (i) Use Fourier transform technique to evaluate $\int_{0}^{\infty} \frac{dx}{(x^{2}+1)(x^{2}+4)}$ (8)

(ii) Find the Fourier cosine transform of the function $f(x) = \frac{e^{-ax}}{x}$ (8)

31301

13. (a) (i) Using convolution theorem, find $z^{-1} \left[\frac{z^2}{(z-a)(z-b)} \right]$ (8)

(ii) Find the z – transform of
$$\frac{1}{(n+1)(n+2)}$$
 (8)

Or

(b) (i) Solve $u_{n+2} - 5u_{n+1} + u_n = 4^n$ given that $u_0 = 0, u_1 = 1$ using Z-transform. (8)

(ii) Find the inverse Z-transform of
$$\frac{z^3 - 20z}{(z-2)^3(z-4)}$$
. (8)

14. (a) A tightly stretched string of length l has its ends fastened at x = 0, x = l. The midpoint of the string is then taken to height h and then released from rest in that position. Find the lateral displacement of a point of the string at time t from the instant of release. (16)

Or

- (b) The ends *A* and *B* of a rod *l* cm long have the temperature at $30^{\circ}c$ and $80^{\circ}c$ until steady state prevails. The temperature of the ends is then changed to $40^{\circ}c$ and $60^{\circ}c$ respectively. Find the temperature distribution in the rod at any time. (16)
- 15. (a) Solve $u_{xx} + u_{yy} = 0$ over the square mesh of side 4 units; satisfying the following boundary conditions:

(i)
$$u(0, y) = 0$$
 for $0 \le y \le 4$
(ii) $u(4, y) = 12 + y$ for $0 \le y \le 4$
(iii) $u(x, 0) = 3x$ for $0 \le x \le 4$
(iv) $u(x, 4) = x^2$ for $0 \le x \le 4$ (16)

- (b) (i) Solve $u_{xx} = 32u_t$ for $t \ge 0$, $0 \le x \le 1$, u(0, t) = 0, u(x, 0) = 0 and u(1, t) = t for two time step. (8)
 - (ii) Solve $u_t = u_{xx}$ given u(0, t) = 0 and u(4, t) = 0, u(x, 0) = x(4-x) assuming h=k=1. Find the values of u up to t=5. (8)