Reg. No.:					

Question Paper Code: 51102

B.E. / B.Tech. DEGREE EXAMINATION, DECEMBER 2015

First Semester

Civil Engineering

15UMA102 - ENGINEERING MATHEMATICS - I

(Common to ALL branches)

(Regulation 2015)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 1 = 10 \text{ Marks})$

1.	$d(x^2 \log x)$ with respect to	o 'x' is		
	(a) $x \left(1 + 2\log x\right)$	$(b)(x + 2\log x)$	(c) $x \left(x + 2 \log x \right)$	$(d) \left(1 + 2\log x\right)$

- 2. Identify the value of $\frac{d^3}{dx^3} (e^{3x}) at x = 0$.
- (a) 1 (b) 3 (c) 6 (d) 9
- 3. If $x = r\cos\theta$ and $y = r\sin\theta$, then Jacobin of r and θ is
 - (a) $\frac{1}{r}$ (b) r (c) $r \sin \theta$ (d) $r^2 \sin \theta$
- 4. If $u = \tan^{-1} \left(\frac{x^2 + y^2}{x y} \right)$, then $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to
 - (a) 0 (b) nu (c) $r \sin 2u$ (d) $\sin 2u$

- 5. If f(x) is odd function, then $\int_{-\pi}^{\pi} f(x) dx$ is equal to
 - (a) $2 \int_{0}^{a} f(x) dx$ (b) 2f(a)
- (c) 0
- (d) 1

- 6. $\int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}} dx$ is equal to
 - (a) $\sqrt{\pi}$

- (b) $\sqrt{\frac{1}{2}}$ (c) $\frac{\sqrt{\pi}}{2}$
- (d) $\frac{2}{\sqrt{\pi}}$

- 7. $\int_{1}^{2} \int_{1}^{3} \frac{dxdy}{xy}$ is equal to
 - (a) $\log 2 \log 3$
- (b) $\log 2 + \log 3$ (c) $2 \log 6$
- (d) 2

- 8. $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} xy dx dy dz$ is equal to
 - (a) 3

- (b) 6
- (c) 12
- (d) 36
- If product of two Eigen value is 12 and determinant is 36 of the 3 x 3 matrix, then find the third Eigen value.
 - (a) 2

(b) 3

(c) 4

- (d) 5
- 10. If $X = (1, m, 3)^T$ and $Y = (6, 3, 1)^T$ are orthogonal vector, then find the value of m.
 - (a) 0

(b) 1

- (c) -1
- (d) -3

PART - B (5 x
$$2 = 10 \text{ Marks}$$
)

- 11. Differentiate $\sin(\tan x)$.
- 12. Write the any two properties of Jacobin.
- 13. Prove that Beta function satisfies commutative law.
- 14. Change the order of integration $\int_{0}^{2} \int_{0}^{3} dx dy$.
- 15. Find the nature of the $2x^2 3y^2 + z^2$.

PART - C (5 x 16 = 80 Marks)

- 16. (a) (i) Find the n^{th} derivative of $\frac{1}{x^2 + a^2}$. (8)
 - (ii) A body originally at $80^{\circ}C$ cools down to $60^{\circ}C$ in 20 minutes, the temperature of the air being $40^{\circ}C$. What will be the temperature to the body after 40 minutes from the original?

Or

- (b) (i) Expand $e^{\sin x}$ using Maclaurin's series. (8)
 - (ii) Prove that $(x^2 1) y_{n+2} + (2n + 1) x y_{n+1} + (n^2 m^2) y_n = 0$. Given that $y^{\frac{1}{m}} + y^{\frac{-1}{m}} = 2x$ using Leibnitz's theorem. (8)
- 17. (a) (i) Show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u \log u$ where $\log u = \frac{\left(x^3 + y^3\right)}{\left(3x + 4y\right)}$. (8)
 - (ii) Find the longest and shortest distances of the point (1, 2, -1) from the sphere $x^2 + y^2 + z^2 = 24$. (8)

Or

- (b) (i) Expand $e^x \log(1+y)$ using Taylor's expansion. (8)
 - (ii) A rectangle box open at the top is to have volume of 32 cubic ft. Find the dimension of the box. (8)
- 18. (a) (i) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx.$ (8)
 - (ii) Prove that $\int_{0}^{1} \frac{x^2 dx}{\sqrt{1-x^4}} \times \int_{0}^{1} \frac{dx}{\sqrt{1-x^4}} = \frac{\pi}{4}$. (8)

Or

- (b) (i) Evaluate $\int \cos^7 x dx$ using reduction formula. (8)
 - (ii) Prove that $\int_{0}^{\infty} \frac{x^5}{5^x} dx = \frac{120}{(\log 5)^6}$. (8)

19. (a) (i) Find the volume bounded above by the sphere $x^2 + y^2 + z^2 = a^2$ and below by the cone $x^2 + y^2 = z^2$. (8)

(ii) Evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{a^2 - y^2}} \sqrt{a^2 - x^2 - y^2} dx dy$$
. (8)

Or

- (b) (i) Find the volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$. (8)
 - (ii) Change the order of integration and hence evaluate $\int_{0}^{4} \int_{\frac{x^{2}}{4}}^{2\sqrt{x}} dy dx.$ (8)
- 20. (a) (i) Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$.
 - (ii) Verify Cayley Hamilton theorem and hence find A^{-1} if $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$.

 (8)

Or

(b) Reduce $8x^2 + 7y^3 + 3z^3 - 12xy - 8yz + 4zx$ into canonical form by an orthogonal reduction and find the rank, index, signature and the nature of the quadratic form. (16)