Reg. No.:					

Question Paper Code: 51105

B.E. / B.Tech. DEGREE EXAMINATION, DECEMBER 2015

First Semester

Computer Science and Engineering

15UCY105 - APPLIED CHEMISTRY

(Common to Electrical and Electronics Engineering, Electronics and Communication Engineering, Electronics and Instrumentation Engineering and Information Technology)

(Regulation 2015)

	Duration: Three hours			Maximum: 100 Marks		
		Answer ALL Qu	estions			
		PART A - (10 x 1 =	10 Marks)			
1.	1. The band between two identical non-metal atoms has a pair of electrons					
	(a) equally shared between(c) transferred fully from		• • •	shared between them cal spins		
2.	The bond order in N ₂					
	(a) 3.0	(b) 4.0	(c) 0.5	(d) 1.0		
3.	An example of reversible ce	ell is				
	(a) zinc cell	(b) silver cell	(c) Daniel cell	(d) dry cell		
4.	The rate of corrosion is dire	ectly proportional to				
	(a) temperature	(b) corrosive gases	(c) humidity	(d) pH		
5.	The electrolytic solution in	nickel cadmium batte	ery is			

(c) MnO₂

(d) CH₃COOH

(b) KOH

(a) H_2SO_4

6.	Which type of buffer is use	d in electrochemical	bio sensors		
	(a) chromate	(b) phosphate	(c) sulphate	(d) ammonia	
7.	What is the range of visible	region?			
	(a) 200-400 nm	(b) 400-1000 nm	(c) 400-850 nm	(d) 400-750 nm	
8.	The graph plotted between	heat flow and tempe	rature in		
	(a) TGA		(b) DTA		
	(c) DSC		(d) flame photome	etry	
9.	Conducting polyaniline is p	orepared by the			
	(a) oxidative doping of	polyaniline	(b) reductive doping	ng of polyaniline	
	(c) protonic acid dopin	g of polyaniline	(d) all of the above	e	
10.	The An example for organi	c light emitting diod	e is		
	(a) sodium quinacridor		(b) calcium quiancridone		
	(c) aluminium quinacri	done	(d) hydrogen quin	acridoe	
		PART - B (5 x 2 =	10 Marks)		
11.	Define Chemical bond.				
12.	Mention the applications of	Nernst equation.			
13.	Distinguish between prima	ry and secondary bat	teries.		
14.	Draw a neat block diagram	of UV-visible spects	rophotometer.		
15.	List out the advantages of C	OLEDs.			
		PART - C (5 x 16 =	= 80 Marks)		
16.	(a) (i) Explain ionic, cova	llent and metallic bo	nds with examples.	(8)	
	(ii) Define Vander was	lls forces. What are	the factors that affec	t Vander walls forces?	
		Or			
	(b) (i) Explain the determ	nination of lattice en	nergy with the help	of Born Haber's cycle. (8)	

		(ii)	Explain the molecular orbital theory in nitrogen molecule. Write its bonds and bond energy.	ordei (8)
17.	(a)	(i)	What is emf? Explain the determine of emf of unknown cell by Poggendomethod.	orff's (8)
		(ii)	Derive Nernst equation for electrode potential.	(8)
			Or	
	(b)	(i)	What are objectives of electroplating? Explain gold platting.	(10)
		(ii)	Discuss differential aeration corrosion with suitable examples.	(6)
18.	(a)	(i)	Describe the construction and working of lead acid battery.	(10)
		(ii)	Write short notes on Biosensors.	(6)
			Or	
	(b)	(i)	Explain with a neat diagram and working principle of Hydrogen-Oxygen fuel	(8)
		(ii)	What are ion selective electrodes? Explain their types and applications.	(8)
19.	(a)	(i)	Discuss with a neat diagram, the principle, construction and working of UV-visible spectro photometer.	of an (8)
		(ii)	Describe the 12 goals of green chemistry.	(8)
			Or	
	(b)	(i)	Discuss briefly the principle, instrumentation and applications of 2 diffractometer.	X-ray (8)
		(ii)	Explain the principle, instrumentation of differential scanning calorimeter.	(8)
20.	(a)	(i)	What are conducting polymers? Explain their application in detail.	(6)
		(ii)	What id OLED? Explain its structural and properties of OLED.	(10)
			Or	
	(b)	Wh	nat are Liquid Crystals (LC)? Explain their types, structure and applicationail.	ns in (16)