Question Paper Code: 52186

M.E. DEGREE EXAMINATION, DECEMBER 2015

First Semester

Power Electronics and Drives

15PMA126 – APPLIED MATHEMATICS FOR ELECTRICAL ENGINEERS

(Regulation 2015)

Duration: Three hours

Answer ALL Questions

PART A - $(5 \times 1 = 5 \text{ Marks})$

1. In *QR* decomposition, if the matrix A = QR and if A is a square matrix then matrix Q is

(a) null (b) diagonal (c) unitary (d) hermitian

2. In a simplex method if the net evaluation $(Z_j - C_j) \ge 0$, then the current solution is

(a) feasible (b) not optimal (c) optimal (d) not feasible

3. f(x) is called a probability density function of a continuous random variable X if

(a) $f(x) \ge 0$ and $\int f(x) dx = 1$	(b) $f(x) = 1$ and $\int f(x) = 0$
(c) $f(x) = 1$ and $\sum f(x) = 0$	(d) $f(x) = 0$ and $\sum f(x) = 1$

4. What is the classification of $f_x + 2f_{xx} = 0$?

	(a) parabolic	(b) ellipse	(c) hyperbolic	(d) none of these
--	---------------	-------------	----------------	-------------------

5. Crank – Nicholson recurrence scheme is useful to solve

- (a) one dimensional wave equation (b) two dimensional heat equation
 - (c) one dimensional heat equation (d) poisson equation

Maximum: 100 Marks

- 6. Define generalized eigen vector.
- 7. List any two basic differences between a transportation and assignment problem.
- 8. Find the moment generating function of Poisson distribution.
- 9. State convergence of the series.
- 10. What is the value of C^2 in one dimensional wave equation?

PART - C (5 x
$$16 = 80$$
 Marks)

- 11. (a) Construct a QR decomposition for the matrix $A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$. (16)
 - Or
 - (b) Find a generalized eigen vector of rank 3 corresponding to the eigen value $\lambda = 7$ for the matrix $A = \begin{bmatrix} 7 & 1 & 2 \\ 0 & 7 & 1 \\ 0 & 0 & 7 \end{bmatrix}$. (16)
- 12. (a) Solve the LPP using simplex method $Max Z = 5x_1 + 4x_2$ subject to the constraints $4x_1 + 5x_2 \le 10, \ 3x_1 + 2x_2 \le 9, \ 8x_1 + 3x_2 \le 12, \ x_1, \ x_2 \ge 0.$ (16)

Or

(b) Solve the transportation problem.

Destination							
		А	В	С	D		
Source	Ι	21	16	25	13	11	
Jource	II	17	18	14	23	13	Availability
	III	32	27	18	41	19	Trvanaomry
Requirement		6	10	12	15	43	

(16)

- 13. (a) (i) Define binomial distribution. Find its moment generating function. Hence find its mean and variance. (8)
 - (ii) The mileage which car owners get with certain kind of radial tire is a random variable having exponential distribution with mean 4000 km. Find the probability that one of these tires will last (1) atleast 20000 km (2) atmost 30000 km.
 (8)

Or

- (b) (i) State the memoryless property of geometric distribution. (8)
 - (ii) If X is uniformly distributed random variable in (0, 1), find the probability density function of Y = 2X + 1. (8)
- 14. (a) Find the eigen values and eigen functions of $y'' + \lambda y = 0$, 0 < x < 1, y(0) = 0, y(1) + y'(1) = 0. (16)

Or

- (b) Calculate the averge power of the periodic signal, period T = 2, f(t) = 2 cos 6πt + sin 5πt. Using
 (i) Time domain analysis and
 (ii) Frequency domain analysis.
- 15. (a) Solve the Poisson equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the square mesh with sides x = 0 = y, x = 3 = y with u = 0 on the boundary and mesh length is 1. (16)

Or

(b) Find the solution of $\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial u}{\partial t} = 0$, when u(0, t) = 0 = u(4, t), u(x, 0) = x(4 - x). Assume h = 1 and find the values up ot = 5 using Bender - Schmidt's method. (16)

(16)

##