Reg. No. :										
------------	--	--	--	--	--	--	--	--	--	--

Maximum: 100 Marks

Question Paper Code: 52122

M.E. DEGREE EXAMINATION, DECEMBER 2015

First Semester

Communication Systems

15PCM102 - ADVANCED RADIATION SYSTEMs

(Regulation 2015)

Duration: Three hours

Answer ALL Questions

PART A - $(5 \times 1 = 5 \text{ Marks})$

1.	A straight electrical conductor measuring 1/2 wavelength from end to end and connected at the center to a radio-frequency (RF) feed line antenna.							
	(a) Dipole	(b) Log periodic	(c) Biconical	(d) Horn				
2.	Parabolic Dish Antenna is also called as							
	(a) Slot	(b) Horn	(c) Reflector	(d) Dipole				
3.	In order to increase the directivity the array length should be							
	(a) Increased	(b) Remain constant	(c) Decreased	(d) Depend Capacity				
4.	Identify the uncommon type of patch antenna.							
	(a) Triangle	(b) Square	(c) Circular	(d) Hexagon				
5.	A multi-element, direct	tional, antenna designed	to operate over a wid	e band of frequencies is				
	(a) Dipole	(b) Log periodic	(c) Biconical	(d) Horn				
		PART - B (5 x 3 =	15 Marks)					
6.	Differentiate Mono pol	e and a dipole.						
7.	State field equivalence principle.							
8.	Distinguish broad side array and end fire array.							

9. List some applications of Micro-Strip antenna.

10. Enumerate the different performance features of an antenna measurement.

PART - C (5 x 16 = 80 Marks)

11.	(a)	(i)	Write a short note on mobile phone antenna and handset antenna.	(8)			
		(ii)	State and prove reciprocity theorem.	(8)			
			Or				
((b)	(i)	Explain the function of balanced to unbalanced transformer.	(8)			
		(ii)	Using suitable mathematics, show that the current distribution in a dipol asymptotic.	e is (8)			
12.	(a)	Usi	ing suitable mathematics, explain the radiation principle of a rectangular apert	ture. (16)			
			Or				
	(b)	Dis	scuss about the design considerations and the feed mechanisms of a reflector ante	nna. (16)			
13.	(a)	Sur	mmarize the linear array synthesis techniques. Bring out the salient features.	(16)			
			Or				
	(b)	(i)	Brief a note on Binomial array.	(6)			
		(ii)	Derive the general polynomial equation for Chebyshev array.	(10)			
14.	(a)	(i)	Using suitable mathematics, explain the radiation principle of a rectangular p antenna.	atch (10)			
		(ii)	Discuss the design considerations and the formulas involved in circular p antenna.	atch (6)			
	Or						
	(b)	(i)	Using suitable mathematics, explain the radiation principle of circular p antenna.	atch (10)			
		(ii)	Discuss the design considerations and the formulae involved in a rectangular p antenna.	atch (6)			
15.	(a)	Des	scribe the compact antenna test ranges and near field ranges with neat diag	ram. (16)			
	Or						

(b) Explain the method of antenna impedance measurement techniques. (16)

52122