Question Paper Code: 52914

M.E. DEGREE EXAMINATION, DECEMBER 2015

Elective

CAD / CAM

15PCD522 – DESIGN AND ANALYSIS OF EXPERIMENTS

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

(5 x 20 = 100 Marks)

1.	(a) (i)	Explain in detail about experimental strategies.	(14)
	(ii)	Write short notes on ANOVA technique.	(6)

Or

- (b) (i) Explain the various steps involved in experiment design process. (10)
 - (ii) Discuss the linear regression model in detail. (10)
- 2. (a) (i) Describe the analysis of a completely Randomized design with k observations per cell. (20)

Or

- (b) Develop the analysis of covariance for randomized block design with one Co-commitant variable, stating clearly the assumptions. (20)
- 3. (a) Explain in detail about three factor full factorial experiments with suitable example.

(20)

	(b) In the case of two associate class PBIBD, define the parameters and develop the intr			
	block analysis using a suitable model.	(20)		
4.	(a) (i) Explain in detail about Response surface methodology.	(14)		
	(ii) Write short notes on split plot design.	(6)		
	Or			
	(b) Explain in detail about approximate F-tests.	(20)		
5.	(a) (i) Illustrate the applications of orthogonal arrays.	(10)		
	(ii) Discuss about various controllable and noise factors.	(10)		
Or				

(b) Construct a case study for the three types of signal-to-noise ratio (S/N Ratio) used in taguchi's robust design.
(20)