Reg. No. :				
------------	--	--	--	--

Question Paper Code: 31336

B.E. / B.Tech. DEGREE EXAMINATION, NOVEMBER 2015

Third Semester

Electrical and Electronics Engineering

01UEE306 - DIGITAL LOGIC CIRCUITS

(Regulation 2013)

Duration: Three hours

Answer ALL Questions

Maximum: 100 Marks

PART A - (10 x 2 = 20 Marks)

- 1. Determine $(377)_{10}$ in Octal and Hexa-Decimal equivalent.
- 2. Define propagation delay.
- 3. Give one application each for multiplexer and decoder.
- 4. Realize the logic expression Y = (AB)' + A + (B+C)' using NAND gates only.
- 5. Convert T flip flop to D flip flop.
- 6. What is a master-slave FF?
- 7. What is a deadlock conditions?
- 8. Mention the applications of PLA.
- 9. Write a VHDL code for 2x1 MUX.
- 10. Write HDL behavioral model of T flip flop.

PART - B (5 x 16 = 80 Marks)

11. (a) What is Hamming code? Discuss how the Hamming code is used to test and correct the error in the given word using suitable examples. (16)

	(b)	(i)	With circuit schematic, explain the operation of a two input TTL NAND with totem-pole output	gate (10)
		(ii)	Compare totem pole and open collector outputs.	(6)
12.	(a)	(i)	Reduce the following using K-Map method. $F = \sum m (2, 3, 4, 6, 7, 9, 11, 13)$.	(8)
		(ii)	Design a full adder using two half-adder and an OR gate.	(8)
			Or	
	(b)	(i)	Implement the following Boolean function using 8:1 MUX:	
			$F(A, B, C, D) = \sum m (0, 1, 3, 4, 8, 9, 15).$	(10)
		(ii)	Design a code converter that converts a BCD to Excess-3 code.	(6)
13.	(a)	(i)	Explain the operation of a master slave JK flip flop.	(8)
		(ii)	Design a 3 bit counter using T flip flop.	(8)

Or

- (b) Design a sequential circuit for the following state equations: A(t+1)=C+D; B(t+1)=A; C(t+1)=B; D(t+1)=C. (16)
- 14. (a) Design an asynchronous sequential circuit that has 2 inputs x₂ and x₁, and one output z. The output is to remain 0 as long as an x₁ is 0. The first change in x₂ that occurs while x₁ is 1 will cause z to be 1. z is to remain 1 until x₁ returns to 0. Construct a state diagram and flow table. Determine the output equations. (16)

Or

- (b) (i) A combinational logic circuit is defined by the following function $f_1(a, b, c) = \sum (0, 1, 6, 7), f_2(a, b, c) = \sum (2, 3, 5, 7)$ Implement the circuit with a PAL having three inputs, product terms and two outputs. (10)
 - (ii) Describe the concept and working of FPGA. (6)
- 15. (a) (i) Construct a VHDL module for a JK flip-flop. (8)
 - (ii) Express how arithmetic and logic operations are expressed using RTL. (8)

Or

(b) Write the VHDL code to realize a 3-bit Gray code counter using case statement. (16)