Question Paper Code: 31444

B.E. / B.Tech. DEGREE EXAMINATION, NOVEMBER 2015

Fourth Semester

Electronics and Communication Engineering

01UEC404 - SIGNALS AND SYSTEMS

(Regulation 2013)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 2 = 20 Marks)

- 1. Sketch the signal $x(t) = e^{-t}$ for an interval $0 \le t \le 2$.
- 2. Write the equations for energy and power of CT signals.
- 3. State Parseval's theorem for continuous time Fourier series.
- 4. Find the Fourier transform of signal $x(t) = \delta(t)$.
- 5. State the final value theorem and initial value theorem of Laplace transform.
- 6. What are the drawbacks of transfer function method?
- 7. What is the condition for the existence of DTFT?
- 8. Find y(n) for the input $x(n) = \{1 \ 2 \ 3\}$ and $h(n) = \{1, 1\}$ using convolution.
- 9. Find the z- transform of the sequence $x(n) = \{3, 2, -1, -4, 1\}$.
- 10. What are the different methods evaluating inverse z- transform?

PART - B ($5 \times 16 = 80 \text{ Marks}$)

- 11. (a) Define and plot the following signals:
 - (i) unit step and unit impulse signals (6)
 - (ii) unit ramp and unit parabolic signals
 - (iii) signum function

Or

- (b) (i) Check whether the system $\frac{d^3y(t)}{dt^3} + 4\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 2y^2(t) = x(t)$ is linear or non linear, causal or non-causal and time invariant or time variant. (12)
 - (ii) Find the energy and power of the signal $x(t) = \cos t$ (4)
- 12. (a) (i) Find the Fourier series for the periodic signal x(t) = t for $0 \le t \le 1$ and repeats every one sec's. (12)
 - (ii) Find Fourier transform of $x(t) = e^{at}u(-t)$. (4)

Or

- (b) Find the Fourier transform of the following signals
 - (i) $x(t) = e^{-2t}u(t-1)$ (4)

(ii)
$$x(t) = te^{-3t}u(t)$$
 (4)

(iii)
$$x(t) = e^{-|t|} for - 1 \le t \le 1$$
 (8)

- 13. (a) (i) State and explain the time shifting and differentiation properties of continuous time signals using Laplace transform in time domain. (12)
 - (ii) Find the Laplace transform of the signal $x(t) = e^{-at} sin\omega t$. (4)

Or

- (b) (i) Draw the Direct form I and Direct form II of the following systems differential equations $4 \frac{d^2 y(t)}{dt^2} + 5 \frac{dy(t)}{dt} + 2y(t) = 3x(t)$ (10)
 - (ii) The LTI system is described by the differential equation $\frac{d^2y(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t).$ Obtain the impulse response, if the system is causal. (6)

(6)

(4)

14. (a) List out and explain any four properties of DTFT.

Or

- (b) (i) Given $y(n) = x(n) + \frac{1}{8}x(n-1) + \frac{1}{3}x(n-2)$. Find whether the system is stable or not. (8)
 - (ii) Determine the response of the following system using convolution x(n) = u(n+1) u(n-4) and $h(n) = \{1, 2, 3, 4\}.$ (8)
- 15. (a) (i) Find Z-Transform and ROC of the following sequence of signal is $x(n) = a^n u(n) + b^n u(-n-1).$ (10)
 - (ii) State and prove frequency shifting property of Z-Transform. (6)

Or

- (b) (i) Draw the block diagram for $H(z) = \frac{1+2z^{-1}+4z^{-2}}{1-z^{-1}+2z^{-2}}$ using Direct form I. (8)
 - (ii) For the state space representation of the system, find the transfer function of the system. $A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$. (8)

(16)

#