1	 	 <u> </u>	······································		 	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	i
Reg. No.:								
•					 			

Question Paper Code: 31577

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Seventh Semester

Mechanical Engineering

ME 2402/ME 72/10122 ME 703 — COMPUTER INTEGRATED MANUFACTURING

(Regulation 2008/2010)

(Common to PTME 2402 — Computer Integrated Manufacturing for B.E. (Part-Time) Sixth Semester – Mechanical Engineering – Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$PART A - (10 \times 2 = 20 \text{ marks})$

- 1. What are the advantages to be gained by the adoption of CAD?
- 2. Specify the range of applications for which typical geometric modeling information is used.
- 3. Differentiate IGES and GKS Graphic standards.
- 4. Differentiate Modulation and Demodulation.
- 5. Explain opitz coding system.
- 6. Define Group technology.
- 7. Mention the importance of Shop Floor Control Systems (SFC).
- 8. What are the inputs and outputs of MRP?
- 9. Describe CIM data transmission methods.
- 10. List different types of production monitoring systems.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Explain the requirements for a graphic database.
 - (ii) Brief the importance of editing, dimensioning and labeling features of CAD. (8)

		(b)	(i)	Describe various types of information normally stored geometric database for products in a CIM environment.	in a (8)	•		
			(ii)	Explain the concept of obtaining a rotation about an arbitrary in XY plane.	point (8)			
	12 .	(a)	(i)	Explain the Open System Interconnection Architecture (formulated by ISO.	(OSI) (8)			
			(ii).	Illustrate the communication matrix used in CIM. Or	(8)	•		
	-	(b)	(i)	What are the different network topologies available? Discuss in detail.	them (8)	•		•
			• (ii)	Brief the significance of MAP in CIM environment.	(8)	•		
	13.	(a)	(i)	Explain generative and variant computer aided process planapproaches in detail.	ning (8)	-		•
			(ii)	Discuss the role of CAPP in CAD/CAM integration. Or	(8)			
		(b)	(i)	Discuss DCLASS and MCLASS coding systems.	(8)			
•		• .	(ii)	Define part classification and coding. How is it useful in for group technology layout?	ming (8)	,		
•	14.	(a)	(i)	Explain bar code technology in detail.	(8)	-		
•			(ii)	Illustrate different FMS layout configurations. Or	(8)			
		(b)	(i)	Discuss the technology behind automated data collection system	n. (8)			
•	•		· (ii)	Explain the types of material handling and storage systems us FMS.	ed in (8)	-		
	15 .	(a)	(i)	Discuss the benefits of direct digital control.	(8)			
	•		(ii)	Discuss the activities under computer aided manufacturing planning and manufacturing control.	aring (8)	•	•	
· ·		(b)	/i)	Describe the features of MRP-I and MRP-II systems.	(8)			
•		()	(ii)	Brief Lean and Agile manufacturing concepts.	(8)			-