113		CN
2/12	113	
201		

Reg. No.:				
Reg. No.:				<u></u>

Question Paper Code: 31429

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Sixth Semester

Electronics and Instrumentation Engineering

EI 2352/EI 62/10133 EI 602 – PROCESS CONTROL

(Common to Instrumentation and Control Engineering)

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. Distinguish between Batch process and continuous process.
- 2. What is Servo operation?
- 3. Define Neutral zone with respect to on-off controller.
- 4. What are the effects of PI controller?
- 5. Why the controllers need to be controlled?
- 6. List any two performance indices in process control.
- 7. What is meant by inferential control?
- 8. State the advantages of Feed-Forward control.
- 9. What is meant by cavitation?
- 10. What are the uses of control valve positioners?

11. (a) Derive the mathematical model for the given process

 C_1 , C_2 - Capacitances of the tank I and II respectively.

 h_1,h_2 and A_1,A_2 — Heights of liquid level and areas of the tanks tank I and II respectively

R - Resistance of the value

 q_i and q_1 — Inflow and outflow of tank I

 q_0 — Outflow of tank II

Or

- (b) (i) Distinguish between Servo and regulator operation. (6)
 - (ii) Explain the self-regulation process with an example. (10)
- 12. (a) (i) With neat schematic diagram, explain the single speed floating control. (6)
 - (ii) With neat sketch, explain the working of P+I pneumatic controller. (10)

Or

- (b) Explain, with a neat circuit diagram, the working of electronic PID controller. (16)
- 13. (a) Explain, how to find the controller settings using process reaction curve with an example. (16)

Or

(b) Determine the optimum controller settings for the given transfer function $\frac{1}{(s+1)^3}$ using Ziegler-Nichols tuning method. (16)

14. (a) With suitable block diagram, explain the cascade control scheme and splitrange control scheme. (16)

 \mathbf{Or}

- (b) Explain the three element control scheme (multivariable control) in a boiler system. (16)
- 15. (a) (i) With neat circuit diagram, explain the I/P converter. (6)

 (ii) With necessary diagram, explain the characteristics of control valves. (10)

Or

(b) Explain the procedure for control valve sizing for a flow control system. (16)