


| -         | · |       |              |   |   | <br> |   |  |
|-----------|---|-------|--------------|---|---|------|---|--|
|           |   | <br>  |              |   | ľ | ĺ    |   |  |
| Reg. No.: |   |       | . :          |   |   |      |   |  |
|           |   | <br>L | <br>L: -:-:: | L | t |      | 1 |  |

## Question Paper Code: 31422

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

## Fourth Semester

Electronics and Instrumentation Engineering

EI 2253/EI 43/10133 EE 406/080300014 — DIGITAL LOGIC CIRCUITS

(Regulation 2008/2010)

(Common to PTEI 2253 — Digital Logic Circuits for B.E. (Part –Time) Second Semester Electronics and Instrumentation Engineering — Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

- 1. What is hamming code?
- 2. What are reduntant prime Implicants?
- 3. How the decoder is used as a demultiplexer?
- 4. Implement the function  $F = A \cdot B$  using NOR gates?
- 5. How many flip flops are required to build a binary counter that counts from 0 to 128?
- 6. Why is state reduction necessary?
- 7. What is primitive flow table?
- 8. State advantages of totem pole output.
- 9. What is memory expansion?
- 10. Define cycle in asynchronous circuits.

|     | •   | •     |                                                                                                                                    |                         |
|-----|-----|-------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 11. | (a) |       | Convert the function $f(A,B,C) = (A + \overline{B} + C)(\overline{A} + B + \overline{C})$ . standard sum of product form.          | into (5)                |
| •   | •   |       |                                                                                                                                    | rore                    |
| •   |     |       | The Hamming code 101101101 is received. Correct it if any error are four parity bits and odd parity is used.                       | (5)                     |
|     |     | (iii) | Convert the following:                                                                                                             |                         |
|     |     |       | $(1)  (61.3)_{10} = (\ )_2$                                                                                                        |                         |
|     |     |       | $(2)  (37.29)_{10} = (\ )_8$                                                                                                       | •                       |
|     |     | •     | $(3)$ $(101011)_2$ to Gray code.                                                                                                   | (6)                     |
|     |     |       | $\mathbf{Or}$                                                                                                                      | •                       |
| -   | (b) | Dete  | ermine the essential prime implicants of the following function fy using k-map $f=\Sigma m(3,4,5,7,9,13,14,15)+\Sigma d(0,1)$      | and                     |
| 12. | (a) | (i)   | Compare Serial and parallel Adder.                                                                                                 | (6)                     |
|     |     | (ii)  | Implement following multiple output function using decoder logic gates.                                                            | and                     |
|     |     |       | $f_1(A,B,C) = \Sigma m(1,4,5,7)$                                                                                                   |                         |
|     |     |       | $f_2(A,B,C) = \pi M(2,3,6,7)$                                                                                                      | (10)                    |
|     |     |       | $\mathbf{Or}$                                                                                                                      |                         |
|     | (b) | (i)   | Construct a Binary to BCD code converter using full address.                                                                       | (10)                    |
|     |     | (ii)  | Design a combination logic circuit with 3 input variables that produce a logic 1 output when more than one input variable logic 1. | t will<br>es are<br>(6) |
| 13. | (a) | (i)   | Draw and explain the working of 4 bit $up/\overline{down}$ synchronic counter.                                                     | onous<br>(12)           |
|     |     | (ii)  | Give the excitation table for T flipflop                                                                                           | (4)                     |
|     |     |       | $\mathbf{Or}$                                                                                                                      |                         |
|     | (b) | (i)   | Design a synchronous counter with states 0, 1, 2, 3, 4, 5, 0, 1, 2, 5, using JK ff's.                                              | 2, 3, 4,<br>(12)        |
|     |     | (::)  | Explain the concept of Ridirectional shift Register.                                                                               | (4)                     |

14. (a) Design a T flipflop from logic gates.

Or

(b) (i) An asynchronous sequential circuit is described by the following excitation and output function.

$$Y = x_1 x_2 + (x_1 + x_2) y$$

Z = y

- (1) Draw the logic diagram of the circuit.
- (2) Derive the transition table and output map.
- (3) Describe the behaviour of the circuit (10)
- (ii) Write notes on shared row state assignment and one hot state assignment. (6)
- 15. (a) (i) Design a BCD to Excess 3 code converter and implement using suitable PLA. (10)
  - (ii) Give the classification of semiconductor memory. (6)

Or

- (b) (i) Draw and explain the circuit for tri-state TTL inverter. (10)
  - (ii) Give the characteristics of ECL family. (6)