

Reg. No.:												
-----------	--	--	--	--	--	--	--	--	--	--	--	--

Question Paper Code: 31368

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Fifth Semester

Electrical and Electronics Engineering

EC 2361/EC 2314/EC 65/10144 EC 502/10133 EE 502 — DIGITAL SIGNAL PROCESSING

(Common to Electronics and Instrumentation Engineering and Instrumentation and Control Engineering)

(Regulation 2008/2010)

(Also common to PTEC 2361 – Digital Signal Processing for B.E (Part-Time) Fifth Semester Electronics and Instrumentation Engineering – Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. What is the Nyquist rate for the signal $x_a(t) = 3\cos 600\pi t + 2\cos 1800\pi t$?
- 2. Determine the fundamental period of the signal $\cos\left(\frac{\pi 30n}{105}\right)$.
- 3. Determine the z-transform and ROC for the signal $x(n) = \delta(n-k) + \delta(n+k)$.
- 4. Prove the convolution property of z-transform.
- 5. Draw the butterfly diagram for decimation in time FFT algorithm.
- 6. In eight point decimation in time (DIT), what is the gain of the signal path that goes from x(7) to X(2)?
- 7. Is the given transfer function $H(z) = \frac{1 + 0.8z^{-1}}{1 0.9z^{-1}}$ represents low pass filter or high pass filter?

The impulse response of an analog filter is given in figure 1. Let $h(n) = h_a(nT)$ 8. where T = 1. Determine the system function.

- What is meant by bit reversed addressing mode? What is the application for 9. which this addressing mode is preferred?
- Compare the RISC and CISC processors.

PART B
$$-$$
 (5 × 16 = 80 marks)

Determine the response of the following systems to the input signal (a)

$$x(n) = \begin{cases} |n|, & -3 \le n \le 3 \\ 0, & \text{otherwise} \end{cases}$$

(i)
$$x_1(n) = x(n-2)\delta(n-3)$$

(i)
$$x_1(n) = x(n-2) \delta(n-3)$$

(ii) $x_2(n) = x(n+1) u(n-1)$

(iii)
$$y(n) = \frac{1}{3}[x(n+1) + x(n) + x(n-1)]$$

(iv)
$$y(n) = \max[x(n+1), x(n), x(n-1)]$$

(v) Find the even and odd components of given
$$x(n)$$
. (16)

Or

- (b) A discrete time systems can be
 - Static or dynamic (i)
 - Linear or non linear
 - Time invariant or time varying
 - (iv) Stable or unstable.

Examine the following system with respect to the properties above y(n) = x(n) + nx(n+1).(16)

- Determine the causal signal x(n) whose z-transform is given by (\mathbf{a}) $X(z) = \frac{1+z^{-1}}{1-z^{-1}+0.5z^{-2}}.$ (10)
 - Determine the z-transform of the signal $x(n) = (\cos \omega_0 n) u(n)$. (ii)

Consider the system shown in figure 2 with $h(n) = a^n u(n)$, -1 < a < 1. (b) Determine the response y(n) of the system to the excitation (16)x(n) = u(n + 5) - u(n - 10).

Figure 2

- The first five points of the eight point DFT of a real 13. (a) valued sequence are $\{0.25, 0.125 - j0.3018, 0, 0.125 - j0.0518, 0\}$. Determine the remaining three points.
 - Compute the eight point DFT of the sequence x = [1,1,1,1,1,1,1,1], (ii)using Decimation-in-Frequency FFT algorithm. (12)

Or

Consider the sequences: (b)

$$x_1(n) = \{0, 1, 2, 3, 4\}, x_2(n) = \{0, 1, 0, 0, 0\}$$

$$s(n) = \{1, 0, 0, 0, 0\}$$

- Determine a sequence y(n) so that $Y(k) = X_1(k)X_2(k)$
- Is there a sequence $x_3(n)$ such that $S(k) = X_1(k)X_3(k)$? (ii)
- Design an FIR linear phase, digital filter approximating the ideal (a) 14.

frequency response
$$H_d$$
 $(\omega) = \begin{cases} 1, & |\omega| \le \frac{\pi}{6} \\ 0, & \frac{\pi}{6} < |\omega| \le \pi \end{cases}$

Determine the coefficients of a 25 tap filter based on the window method with a rectangular window. (16)

- (b) (i) Convert the analog filter with system function $H_a(s) = \frac{s+0.1}{(s+0.1)^2+9} \text{ into a digital IIR Filter by means of the impulse invariance method.} \tag{8}$
 - (ii) Draw the direct form I and direct form II structures for the given difference equation y(n) = y(n-1) 0.5y(n-2) + x(n) x(n-1) + x(n+2).

(8)

15. (a) Explain Von Neumann, Harvard architecture and modified Harvard architecture for the computer. (16)

Or

- (b) (i) Explain how convolution is performed using a single MAC unit. (8)
 - (ii) Discuss the addressing modes used in programmable DSPs. (8)