70011113

•			_	 		 	
Reg. No.:	3	,					

Question Paper Code: 31392

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Third Semester

Electrical and Electronics Engineering

EE 2202/EE 34/EE 1201 A/10133 EE 303/080280017 — ELECTROMAGNETIC THEORY

(Regulation 2008/2010)

(Common to PTEE 2202 – Electromagnetic Theory for B.E. (Part-Time) Second Semester Electrical and Electronics Engineering – Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. How are the unit vectors defined in cylindrical coordinate systems?
- 2. State Stoke's theorem.
- 3. Define electric potential and potential difference.
- 4. Name few applications of gauss law in electrostatics.
- 5. Write down the magnetic boundary conditions.
- 6. What is Lorentz law of force?
- 7. Distinguish between transformer emf and motional emf.
- 8. What is displacement current?
- 9. State the Poynting theorem.
- 10. Mention any two properties of uniform plane wave.

PART B — $(5 \times 16 = 80 \text{ marks})$

Write short notes on the following:

•		(i)	Gradient	
		(ii)	Divergence	
-		(iii)	Curl and	
		(iv)	Stokes theorem.	(16)
			\mathbf{Or}	
	(b)	Expi	ress the vector B in Cartesian and cylindrical systems. C	liven,
			$\frac{10}{r}\vec{a}_r + r\cos\theta \ \vec{a}_\theta + \vec{a}_\phi$, then find B at (-3, 4, 0) and (5, $\pi/2$, -	
12.	(a)		uce an expression for the capacitance of a parallel plate capaing two dielectric media.	acitor (16)
·			\mathbf{Or}	
	(b)	(i)	State and derive electric boundary conditions for a dielect dielectric medium and a conductor to dielectric medium.	ric to (10)
		(ii)	Derive the expression for energy density in electrostatic fields.	(6)
13.	(a)	Stat at t	te and explain Ampere's circuital law and show that the field str he end of a long solenoid is one half of that at the centre.	ength (16)
			\mathbf{Or}	
	(b)	(i)	State and explain Biot-Savart's law.	(6)
		(ii)	Derive an expression for the force between two long strange parallel current carrying conductors.	raight (10)
14.	(a)	Der	rive and explain Maxwell's equations both in integral and point f	orms. (16)
			\mathbf{Or}	
	(b)	Obt der	tain the expression for energy stored in the magnetic field an rive the expression for magnetic energy density.	d also (16)
15 .	(a)	Der the	rive the relationship between electric field and magnetic field. It wave equation for magnetic field in phasor form.	Derive (16)
			\mathbf{Or}	-
	(b)	Def	fine Brewster angle and derive its expression	(16)