

		 	1	 1 1 1 1 1 1
Reg. No.:				

Question Paper Code: 31296

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Seventh Semester

Electrical and Electronics Engineering

CS 2071/CS 608/10133 EEE 24 – COMPUTER ARCHITECTURE

(Common to Electronics and Instrumentation Engineering and Instrumentation and Control Engineering)

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. How CPU execution time is calculated?
- 2. Mention the use of assembler directive.
- 3. Convert (10110101) 2's complement to decimal and find its negative representation.
- 4. Convert (167FA)₁₆ to octal and decimal.
- 5. What is the purpose of pipelining?
- 6. Write microinstruction format for MicroMIPS.
- 7. Differentiate DRAM Vs SRAM.
- 8. List various cache memory design parameters.
- 9. Why the user must be isolated from details of IO operations?
- 10. List the advantages of threads.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Explain about instruction format of MiniMIPS and various instructions with example. (8)
 - (ii) Explain about various addressing modes in MiniMIPS with example. (8)

			•			- -
		(b)	(i)	Write a program to find maximum value in a list of integration it.	gers. (5)	
			(ii)	Write a macro to find largest of three values. Explain it.	(4)	
			(iii)	Explain pseudo instructions.	(4)	•
	•		(iv)	Write down the benefits and drawbacks of complex instruction.	(3)	
•	12.	(a)	(i)	Explain full adder and ripple carry adder.	(8)	
•	-		(ii)	Explain multifunction ALU in detail.	(8)	
				\mathbf{Or}		
•		(b)	(i)	Explain floating point adder.	(8)	
	-	-	(ii)	Explain floating point instructions with example.	(8)	
	13.	(a)	(i)	Discuss about Instruction Execution unit.	(8)	
•			(ii)	Explain single cycle and multicycle data path in MicroMIPS.	(8)	
•			•	\mathbf{Or}		•
		(b)	Disc	cuss about pipeline and its performance limits.	(16)	
1	14.	(a)	(i)	Explain about SRAM and DRAM.	(8)	
			(ii)	Discuss about RAID.	(8)	•
			•	\mathbf{Or}		•
		(b)	(i)	Explain about cache memory .	(8)	•
			(ii)	Discuss about virtual memory.	(8)	
	15 .	(a)	(i)	Explain DMA.	(8)	·
		•	(ii)	Explain about demand based I/O interrupts.	(8)	· · · · · · · · · · · · · · · · · · ·
			-	Or		
		(b)	(i)	Discuss about nested interrupts.	(8)	
			(ii)	Discuss about multithreads.	(8)	