

•						 	 	بخالس والتنطيب المخسطة		
	i.		1				}			
$\mathbf{p} \sim \mathbf{N}_{\mathbf{p}}$		•	j	·	1			i !		
Reg. No.:	İ									
	j i		}	•						
· ·			f ·						4 T	

Question Paper Code: 13009

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Fourth/Fifth Semester

Electrical and Electronics Engineering

EC 1312 — DIGITAL LOGIC CIRCUITS

(Common to Electronics and Instrumentation Engineering/ Instrumentation and Control Engineering)

(Regulation 2007)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. Define propagation delay of a gate.
- 2. Draw the basic circuit of RTL NOR gate.
- 3. State the application of half adder circuit in real time digital systems.
- 4. Draw the truth table and graphic symbol of universal gates.
- 5. Define demultiplexer.
- 6. What is parity checker?
- 7. Give the characteristic table and excitation table of R-S flip-flop.
- 8. Draw the block diagram of Moore state machine.
- 9. Define flow table.
- 10. What is race?

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

11. (a) Explain the different types of output configuration of TTL gates.

Or

(b) (i) What is transmission gate? Draw its basic circuit.

(4)

(ii) Implement 4×1 multiplexer with transmission gates and explain. (12)

•	12.	(a)	(i) Simplify the following Boolean function and draw the logic diusing NAND gates. $F(A, B, C, D) = \Sigma(3, 7, 11, 13, 14, 15)$.	agram (10)
			(ii) Design a half subtractor circuit.	(6)
	•		\mathbf{Or}	
		(b)	Design a four bit combinational circuit that outputs the 2's composite of the input binary number.	lement
	13.	(a)	(i) Draw a PLA circuit to implement the following functions.	•
· •			$F_1 = A' B + AC' + A' BC; F_2 (AC + AB + BC)'.$	(10)
			(ii) Distinguish PAL and PLA with suitable example.	(6)
•			Or	
•		(b)	(i) Write the HDL dataflow description of 2 to 4 line decoder.	(10)
		•	(ii) Construct a 16×1 multiplexer with two 8×1 multiplexer a 2×1 multiplexer. Use block diagrams.	nd one (6)
	14.	(a)	Design a sequential circuit with two J-K flip-flops and one input $x = 0$, the state of the flip-flops does not change. When $x = 1$, the sequence is 01, 11, 01, 11 $(1 - 3 - 1 - 3)$ and repeat. Provide suitable diagram and table.	e state
			Or	
		(b)	Explain with a neat sketch, the operation of Universal shift registstate its applications.	ter and
	15.	(a)	Find a circuit that has no static hazards and implements the Function $F(A, B, C, D) = \Sigma(0, 2, 6, 7, 8, 10, 12)$.	Boolean
,			Or	
		(b)	(i) Explain the difference between asynchronous and synch sequential circuits.	ronous (6)
			(ii) Describe fundamental mode operation.	(4)
•			(iii) Explain the difference between stable and unstable states.	(6)