

	 			 	•		
Reg. No. :			,				

Question Paper Code: 31353

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Third Semester

Electronics and Communication Engineering

EC 2203/EC 34/080290010/10144 EC 304 — DIGITAL ELECTRONICS

(Regulation 2008/2010)

(Common to PTEC 2203 – Digital Electronics for B.E. (Part-Time) Third Semester – Electronics and Communication Engineering Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. State Distributive Law.
- 2. What is Prime Implicant?
- 3. Enumerate some of the combinational circuits.
- 4. List out various applications of Multiplexer.
- 5. Define: Latches.
- 6. Write short notes on Digital Clock.
- 7. What is Volatile and Non-Volatile memory?
- 8. Give the advantages of RAM.
- 9. What is Synchronous Sequential Circuit?
- 10. Write short notes on Hazards.

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	Simplify $xy + x'z + yz$.	(6)
		(ii)	Simplify the following expression using K-map method.	
-		•	$Y = \sum m(7,9,10,11,12,13,14,15).$	(10)
		-	\mathbf{Or}	
	(b)	(i)	Write short notes on don't care conditions.	(6)
		(ii)	Explain about NAND and NOR implementations.	(10)
12 .	(a)		w the logic diagram of BCD – Decimal decoder and rations.	explain its (16)
			Or	
	(b)		w the block schematic of Magnitude Comparator and rations.	explain its (16)
13.	(a)	(i)	Draw the block diagram of SR–FF and explain.	(6)
		(ii)	Explain about triggering of flip-flops.	(10)
-			\mathbf{Or}	. .
	(b)	Dra	w the block schematic of up-down counter and explain its o	peration. (16)
14.	(a)	Dis	cuss in detail about the classifications of memories.	(16)
			\mathbf{Or}	
	(b)	Dis	cuss in detail about the FPGA with suitable diagrams.	(16)
15 .	(a)	Des	sign a serial binary adder using delay flip-flop.	(16)
			\mathbf{Or}	
-	(b)		t out various problems arises in asynchronous circuits. It problems in detail.	Explain any (16)