

Reg. No.:							
•						_	

Question Paper Code: 31523

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Fourth Semester

Electronics and Communication Engineering

MA 2261/MA 45/MA 1253/10177 PR 401/080380009 — PROBABILITY AND RANDOM PROCESSES

(Common to Biomedical Engineering)

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

Use of statistical tables is permitted.

Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. Define Random Variable.
- 2. Define geometric distribution.
- 3. The joint pdf of the RV (x, y) is given by $f(x, y) = kxy e^{-(x^2+y^2)}$; x > 0, y > 0. Find the value of k.
- 4. Given the RVX with density function

$$f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{elsewhere} \end{cases}$$

Find the pdf of $y = 8x^3$.

- 5. Define random process.
- 6. Define Markov process.
- 7. Define power spectral density function.
- 8. State Wiener-Khinchine theorem.
- 9. Define white noise process.
- 10. Define linear time invariant system.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Derive Poisson distribution from binomial distribution.
 - (ii) Find mean and variance of Gamma distribution.

Or

- (b) (i) Suppose that a customers arrive at a bank according to a Poisson process with a mean rate of 3 per minute. Find the probability that during a time interval of 2 min.
 - (1) exactly 4 customers arrive and
 - (2) more than 4 customers arrive
 - (ii) If X and Y are independent RVs each normally distributed with mean zero and variance σ^2 , find the pdf of $R = \sqrt{X^2 + Y^2}$ and $\phi = \tan^{-1}\left(\frac{Y}{X}\right)$.
- 12. (a) (i) State and prove central limit theorem for iid RVs.
 - (ii) If X and Y are independent RVs with pdf's e^{-x} ; $x \ge 0$ and e^{-y} ; $y \ge 0$, respectively, find the pdfs of $U = \frac{X}{X+Y}$ and V = X+Y. Are U and V independent?

Or

- (b) The joint probability mass function of (X, Y) is given by p(x, y)=k(2x+3y), x=0, 1, 2; y=1, 2, 3. Find all the marginal and conditional probability distributions. Also find the probability distribution of (X+Y).
- 13. (a) (i) If the two RVs A_r and B_r are uncorrelated with zero mean and $E(A_r^2) = E(B_r^2) = \sigma_r^2$, show that the process

 $x(t) = \sum_{r=1}^{n} (A_r \cos w_r t + B_r \sin w_r t)$ is wide-sense stationary.

(ii) If $\{x(t)\}$ is a Gaussian process with $\mu(t)=10$ and $C(t_1, t_2)=16e^{-|t_1-t_2|}$, find the probability that (1) $X(10) \le 8$ and (2) $|X(10)-X(6)| \le 4$.

Or

- (b) (i) Define Random telegraph signal process and prove that it is wide-sense stationary.
 - (ii) Prove that sum of two independent Poisson processes is a Poisson process.

- 14. (a) (i) The autocorrelation function of the random telegraph signal process is given by $R(\tau) = a^2 e^{-2\sqrt{|\tau|}}$. Determine the power density spectrum of the random telegraph signal.
 - (ii) The autocorrelation function of the Poisson increment process is given by

$$R(\tau) = \begin{cases} \lambda^2 & \text{for } |\tau| > \in \\ \lambda^2 + \frac{\lambda}{\epsilon} \left(1 - \frac{|\tau|}{\epsilon} \right) & \text{for } |\tau| \le \epsilon \end{cases}$$

Prove that its spectral density is

$$S(w)=2\pi \lambda^2 \delta(w)+\frac{4\lambda \sin^2\left(w \neq 2\right)}{\epsilon^2 w^2}.$$

Or

(b) (i) If the power spectral density of a WSS process is given by

$$S(w) = \begin{cases} \frac{b}{a} (a - |w|), & |w| \le a \\ 0, & |w| > a \end{cases}$$

Find the autocorrelation function of the process.

(ii) If the process $\{X(t)\}$ is defined as X(t)=Y(t)Z(t) where $\{Y(t)\}$ and $\{Z(t)\}$ are independent WSS processes, prove that

(1)
$$R_{xx}(\tau) = R_{yy}(\tau)R_{zz}(\tau)$$
 and

(2)
$$S_{xx}(w) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{yy}(\alpha) S_{zz}(w-\alpha) d\alpha$$
.

15. (a) (i) If $Y(t) = A\cos(w_0 t + \theta) + N(t)$, where A is a constant, θ is a random variable with a uniform distribution in $(-\pi, \pi)$ and $\{N(t)\}$ is a band-limited Gaussian white noise with a power spectral density

$$S_{NN}(w) = \begin{cases} \frac{N_0}{2}, & \text{for } |w - w_0| < w_B \\ 0, & \text{elsewhere} \end{cases}$$

Find the power spectral density of $\{Y(t)\}$. Assume that N(t) and θ are independent.

(ii) Prove that the spectral density of any WSS process is non-negative.

Or

(b) X(t) is the input voltage to a circuit (system) and Y(t) is the output voltage. $\{X(t)\}$ is a stationary random process with $\mu_x = 0$ and $R_{xx}(\tau) = e^{-\alpha |\tau|}$. Find μ_y , $S_{yy}(w)$ and $R_{yy}(\tau)$, if the power transfer function is $H(w) = \frac{R}{R + iLw}$

$$R + iLw$$

$$Y(t) = \int_{-\infty}^{\infty} h(\alpha)X(t-\alpha)d\alpha.$$