21/12/13

Reg. No.							
Reg. No.		·					·

Question Paper Code: 33375

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Fourth Semester

Electronics and Communication Engineering

EC 1255/EC 1351 - MEASUREMENTS AND INSTRUMENTATION

(Regulation 2004/2007)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A - (10 \times 2 = 20 marks)

- 1. How are the standards of measurement classified?
- 2. How are the amplitude and frequency of a sinewave determined using a CRO?
- 3. Define percentage total harmonic distortion.
- 4. What are the common types of errors that occur during frequency measurement?
- 5. Mention the various elements of a digital data acquisition system and each of their significance.
- 6. What is the difference between static errors and dynamic error?
- 7. State the purpose of a bolometer bridge.
- 8. Mention few applications of spectrum analyser.
- 9. Mention the important advantages of digital measurement techniques over analog techniques.
- 10. Write the need for transducers in data acquisition.

PART B - (5 × 16 = 80 marks)

- 11. (a) (i) Derive the bridge balance equation for an ac bridge and discuss the conditions for balance. (10)
 - (ii) Write explanatory notes on frequency and time standards. (6)
 Or
 - (b) (i) Draw the circuit of a Maxwell's bridge and explain its functioning. (6)
 - (ii) With a circuit explain the working of a moving coil meter. (10)

12 .	(a)	Draw the block schematic of a cathode ray oscilloscope and explain function in detail.					
			\mathbf{Or}				
•	(b)	(i)	Draw the circuit of a Q meter and explain with appropriate equations how it can be used to measure Q factor. (8)				
		(ii)	Explain how the Q meter may be used to measure unknown capacitance. (8)				
13.	(a)	(i)	With a circuit diagram explain the working of a spectrum analyser. (8)				
		(ii)	Explain the theory of operation of a frequency synthesizer. (8)				
			\mathbf{Or}				
	(b)		the circuit diagram explain the working of a wave analyser and a ep generator. (16)				
14.	(a)	(i)	Gating periods of 1 ms, 10 ms, 100 ms, 1 s and 10 s are provided on a digital counter-time-frequency meter having a 3 digit display. A gating period of 10 ms is selected to measure an unknown frequency and a reading of 034 is obtained. What is the likely value of frequency? What steps be taken to check the validity of the result and to obtain a more accurate result? (7)				
		(ii)	Design the circuit of an integrating type of digital voltmeter and discuss the possibility of simulating it using a software. (9)				
			\mathbf{Or}				
	(b)	(i)	Explain in detail about the time base error and gating error. Where do they occur and how to overcome these errors? (8)				
	•	(ii)	Explain how to extend the range of measurement of a frequency meter. (8)				
15 .	(a)	(i)	With a block schematic explain the functioning of a digital data acquisition system. (9)				
		(ii)	Write notes on interfacing of transducers. (7)				
			Or				
	(b)	(i)	With a circuit diagram explain how a fiber optic power meter works. (8)				
		(ii)	With a neat diagram explain the operation of an optical time domain reflectometer. (8)				