

Reg. No.:		

Question Paper Code: 31303

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Fourth Semester

Computer Science and Engineering

CS 2253/CS 43/CS 1252 A/10144 CS 404/080250011– COMPUTER ORGANIZATION AND ARCHITECTURE

(Common to Information Technology)

(Regulation 2008/2010)

(Also Common to PTCS 2253 – Computer Organisation and Architecture for B.E (Part-Time) Third Semester – CSE – Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. What is register indirect addressing mode? When is it used?
- 2. Differentiate between RISC and CISC.
- 3. Compare hardwired and micro programmed controls.
- 4. What is nano programming?
- 5. What is meant by data hazards in pipelining?
- 6. Define pipeline speedup.
- 7. Compare Static RAM and Dynamic RAM.
- 8. Define the terms hit, miss and ratio with respect to cache.
- 9. What is DMA? Mention its advantages.
- 10. What is meant by vectored interrupt?

PART B — $(5 \times 16 = 80 \text{ marks})$

11.	(a)	(i)	Explain in detail the different instruction formats with examples. (8)
		(ii) .	Explain ALU design. (8)
			\mathbf{Or}
	(b)	(i) (ii)	Explain instruction sequencing in detail. (10) What is the need for addressing modes? Explain any two types of addressing modes with examples. (6)
12.	(a)	Expl	ain the following:
		(i)	Address sequencing in control memory. (8)
	•	(ii)	Micro program sequencer. (8)
			Or
•	(b)	(i)	Explain multiple-bus organization. (8)
		(ii)	Explain the design of hardwired control unit. (8)
13.	(a)	(i)	Describe the data and control path techniques in pipelining. (10)
	,	(ii)	Briefly explain the speedup performance models for pipelining. (6)
	•		Or
	(b) .	(i)	What is instruction hazard? Explain in detail how to handle the instruction hazards in pipelining with relevant examples. (10)
	•	(ii)	Write note on exception handling. (6)
14.	(a)	(i)	Explain the need for memory hierarchy technology, with a four-level memory. (6)
	•	(ii)	Explain the various mapping techniques associated with cache memories. (10)
		,	\mathbf{Or}
	(b)	(i)	Explain a method of translating virtual address to physical address. (6)
		(ii)	What for replacement algorithms are used? Explain the important ones. (10)

		•				
	15.	(a)	(i)	Design a parallel priority interrupt hardware eight interrupt sources and explain.	for a system with (8)	
• •			(ii)	Explain USB interface.	(8)	
• •				Or		
		(b)	(i)	Write a short note on I/O processor.	(6)	
			(ii)	What is the need for an I/O interface? Descri SCSI interface with a neat diagram.	be the functions of (10)	

. •

--