

•	· · · · ·		·	 ··· ·· · · · · · · · · · · · · · · · ·	<u> </u>		 · · · · · · ·			i
TO NI										
Reg. No.:						:			:	
		1						-		ł

Question Paper Code: 31301

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Fourth Semester

Computer Science and Engineering

CS 2251/CS 41/CS 1251/10144 CS 402/080230013 — DESIGN AND ANALYSIS OF ALGORITHMS

(Regulation 2008/2010)

(Common to PTCS 2251 – Design and Analysis of Algorithms for B.E. (Part-Time)
Third Semester – Computer Science and Engineering – Regulation 2009)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. What are the components of fixed and variable part in space complexity?
- 2. Define little Oh and Omega notations.
- 3. Give the control abstraction for divide and conquer technique.
- 4. Define feasible and optimal solution.
- 5. State Principle of optimality.
- 6. What is 0/1 knapsack problem?
- 7. What are explicit constraints and implicit constraints?
- 8. What is a Hamiltonian cycle?
- 9. State the property of NP-Complete problem.
- 10. What are the two methods of Branch and bound techniques?

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) Explain the Towers of Hanoi problem and solve it using recursion.

Or

(b) (i) Solve the given recurrence relation.

$$T(n) = \begin{cases} 2T(n/2) + 2 & n > 2 \\ 1 & n = 2 \\ 0 & n = 1 \end{cases}$$

- (ii) Describe best, worst and average case analysis of linear search algorithm.
- 12. (a) Devise an algorithm to sort the following elements using Mergesort technique 286, 45, 278, 368, 475, 389, 656, 788, 503, 126.

Or

- (b) Solve the following Knapsack problem using the Greedy technique. N = 6, (P1, P2, P3, P4, P5, P6) = (W1, W2, W3, W4, W5, W6) = (100, 50, 20, 70, 7, 3) and m = 165.
- 13. (a) What is multistage graph? Write algorithm for the finding the minimum cost path using backward and forward approach.

Or

(b) Using OBST algorithm compute w_i , r_{ij} , c_{ij} where j=0 to 4 for the identifier set (a1, a2, a3, a4) = (end, goto, print, stop) with

$$P_1 = 1/20, P_2 = 1/5, P_3 = 1/10, P_4 = 1/20$$

$$q_0 = 1/5$$
, $q_1 = 1/10$, $q_2 = 1/5$, $q_3 = 1/20$, $q_4 = 1/20$

using r_{ij} construct the optimal binary search tree.

- 14. (a) (i) Draw and explain the dynamic state space tree for four-queens problem.
 - (ii) How do you estimate the efficiency of backtracking?

Or

(b) What is graph coloring? Explain the algorithm with suitable example. Mention some practical applications of graph coloring problem.

- 15. (a) (i) Explain Kruskal's algorithm for constructing minimum cost spanning tree.
 - (ii) Write notes on deterministic and non-deterministic algorithms.

Or,

(b) Solve the following 6 city traveling salesperson problem using the Branch and Bound algorithm.