26/11/3/11/3

,		£	,	1					7				
Reg. No.:													

Question Paper Code: 31308

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Fifth Semester

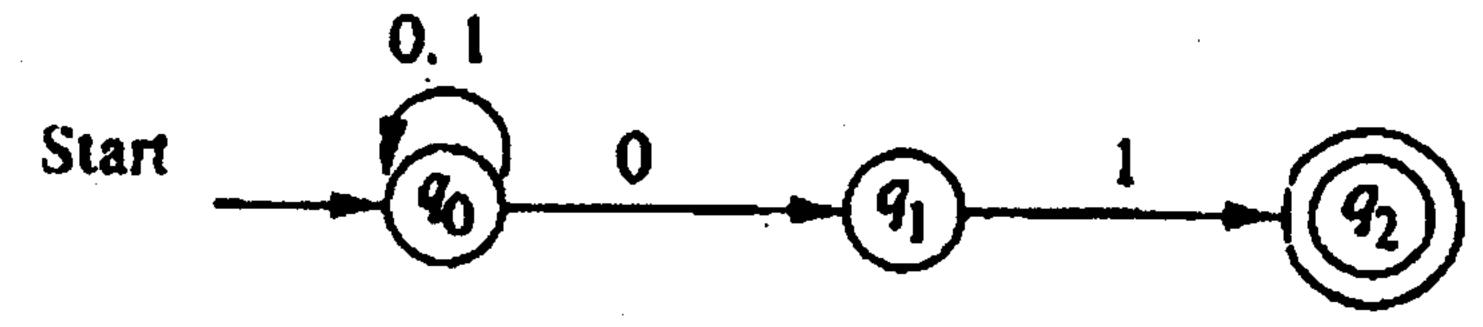
Computer Science and Engineering

CS 2303/CS 53/CS 1303/10144 CS 504 — THEORY OF COMPUTATION (Regulation 2008/2010)

(Common to PTCS 2303 – Theory of computation for B.E. (Part-Time) Fifth Semester Computer Science and Engineering – Regulation 2009)

Time: Three hours

Maximum: 100 marks


Answer ALL questions.

$$PART A - (10 \times 2 = 20 \text{ marks})$$

- 1. Draw the transition diagram (automata) for an identifier.
- 2. What is a non deterministic finite automaton?
- 3. State pumping lemma for regular languages.
- 4. Construct NFA equivalent to the regular expression: (0 + 1)01.
- 5. Write the CFG for the language $L = \{a^n b^n \mid n \ge 1\}$.
- 6. Compare NFA and PDA.
- 7. What are the closure properties of CFL?
- 8. List out the different techniques for Turing machine construction.
- 9. What are (a) recursively enumerable languages (b) recursive sets?
- 10. What is Universal Turing machine?

PART B
$$-$$
 (5 × 16 = 80 marks)

11. (a) (i) Explain the steps in conversion of NFA to DEA. Convert the following NFA to DFA. (8)

(ii) Prove that, if L is accepted by an NFA with E transitions, then L is accepted by NFA without E transitions. (8)

		(b)	(i)	Prove the equivalence of NFA and DFA using subset construction. (8)
	•		(ii)	Give Deterministic finite automata accepting the following language over the alphapet. (1) Number of 1's is a multiples of 3 (2) Number of 1's is not a multiples of 3 (8)
	12.	(a)	(i)	Convert the following NFA into a regular expression. (8)
				Ω
				$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			(ii)	Discuss the closure properties of regular languages. (8)
		(b)	(i) (ii)	Discuss the application of Finite automata. (6) Using pumping lemma for regular sets prove that the language $L = \left\{0^{m} 1^{n} 0^{m+n} \mid m \geq 1 \text{ and } n \geq 1\right\} \text{ is not regular.} \tag{10}$
	13.	(a)	(i)	Convert the following grammar into GNF. (8)
	10.	(a)	. (1)	$S \rightarrow XY1/0$
				$X \rightarrow 00X/Y$
		•		$Y \to 1X1$
			(ii)	Give formal pushdown automata that accepts $\{wcw^R w \ in \ (0+1)^*\}$ by empty stack. (8)
		(b)	(i)	Show that the following grammars are ambiguous. (6) $\{S \rightarrow aSbS/bSaS/\lambda\}$ and
•				$\{S \rightarrow AB / aaB, A \rightarrow a / Aa, B \rightarrow b\}$
	•		(ii)	Prove the equivalence of PDA and CFL. (10)
	14.	(a)	(i)	Explain Turing machine as a computer of integer functions with an example. (10)
			(ii)	Remove E productions from the given grammar. (6)
		(b)	Writ	te short notes on the following:
-			(i) (ii)	Two-way infinite tape TM. (8) Multiple tracks TM. (8)
	15 .	(a)	(i) (ii)	Write the classes and definition of NP problems. (6) Prove that for two recursive languages L ₁ and L ₂ their union and intersection is recursive. (10) Or
	•	(b)	(i)	Prove that if a language is recursive if and only if it and its
•			(ii)	complement are both recursively enumerable. (8) Explain about undecidability of PCP. (8)
		•	(11)	DAPIGHI GOOGO GHACHAGHAY OF F CI.