

Reg. No.:				

Question Paper Code: 31197

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Third Semester

Civil Engineering

CE 2202/CE 35/CE 1203/10111 CE 305/080100015 — MECHANICS OF FLUIDS

(Regulation 2008/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. Write down the S.I. units for (i) Weight density (ii) Mass density (iii) Dynamic viscosity and (iv) Kinematic viscosity.
- 2. Define surface tension and capillarity.
- 3. What is meant by total pressure and centre of pressure?
- 4. Define steam line, streak line, path line and stream tube.
- In a pipe of 90mm diameter water is flowing with a mean velocity of $2m/\sec$ and at a gauge pressure of 350 kN/m^2 . Determine the total head if the pipe is 8 meters above the datum line.
- 6. State and explain Impulse momentum equation.
- 7. Define momentum Thickness and Energy Thickness.
- 8. What is meant by Total Energy line and Hydraulic Gradient line in pipe flow?
- 9. Define Dimensional Homogeneity.
- 10. State and define Buckingham's π theorem.

- 11. (a) A trapezoidal channel 2m wide at the bottom and 1m deep has side slope 1:1 determine.
 - (i) Total pressure
 - (ii) Centre of pressure on the vertical gate closing the channel when it is full of water. (16)

Or

- (b) A $400\,mm$ diameter shaft is rotating at $200\,r.p.m$ in a bearing length $120\,mm$. If the thickness of oil film is $1.5\,mm$ and the dynamic viscosity of the oil is $0.7\,NS/m^2$ determine
 - (i) Torque required to overcome friction in bearing
 - (ii) Power utilised in overcoming viscous resistance. Assume a linear velocity profile.
- 12. (a) An opening in a dam is covered by the use of a vertical shice gate. The opening is 2m wide and 1.2m high on the upstream side of the gate the liquid of specific granty 1.45 lies upto a height of 1.5m above the top of the gate whereas on the downstream side the water is available upto a height touching the top of the gate. Find
 - (i) The resultant force acting on the gate and position of the centre of pressure.
 - (ii) The force acting horizontally at the top of gate which is capable of opening the gate. Assume that gate is hinged at the bottom. (16)

Or

(b) Given that

$$u = -4ax\left(x^2 - 3y^2\right)$$

$$v = 4ay(3x^2 - y^2).$$

Examine whether these velocity components represent a physically possible two-dimensional flow, if so whether the flow is rotational (or) irrotational.

13. (a) The following date relate to an inclined venturimeter

Diameter of the pipe line = 400 mm

Inclination of the pipe line with the horizontal = 30°

Throat diameter = 200 mm

The distance between the inlet and throat of the meter = 600 mm

Sp. gravity of oil flowing through the pipe line = 0.70

Sp. gravity of heavy U-tube liquid = 13.6

Reading (deflection) of the differential manometer = 50 mm

Determine the rate of flow in the pipe line.

(16)

Or

- (b) Two parallel plates kept $100\,mm$ apart have laminar flow of oil between them with a maximum velocity of $1.5\,m/\sec$. Calculate.
 - (i) The discharge per metre width
 - (ii) The shear stress at the plates
 - (iii) The difference in pressure between two points 20 m apart
 - (iv) The velocity gradient at the plates and
 - (v) The velocity at 20 mm from the plate. Assume viscosity of oil to be 24.5 poise.
- 14. (a) A plate of length $750\,mm$ and width $250\,mm$ has been placed longitudinally in a stream of crude oil which flows with a velocity of $5m/\sec$. If the oil has a specific gravity of 0.8 and kinematic viscosity of 1 stoke, calculate:
 - (i) Boundary layer thickness at the middle of plate
 - (ii) Shear stress at the middle of plate and
 - (iii) Friction drag on one side of the plate.

(16)

Or

- (b) A 2500 m long pipe line is used for transmission of power. 120 kW power is to be transmitted through the pipe in which water having pressure of $4000 \,\mathrm{kN/m^2}$ at inlet is flowing. If the pressure drop one the length of the pipe is $800 \,\mathrm{kN/m^2}$ and f = 0.006 find
 - (i) Diameter of the pipe

(ii) Efficiency of transmission.

(16)

		-			•	, 		•	•
									£ .
	15 .	(a)	(i)	Det	ermine the dimensions	of the follow	ing quantities		
		•		(1)	Discharge			•	. •
			•	(2)	Kinematic viscosity	-	•	•	
				(3)	Force				•
•				(4)	Specific weight.			$(4\times2=8)$	•
			(ii)	Exp	lain in detail about	-			· .
•			•	(1)	Geometric similarity				
				(2)	Kinematic similarity		•		•
			•	(3)	Dynamic similarity.			(2+3+3)	
•		- . ·			\mathbf{Or}				
•		(b)	(i)	Wh	at is meant by Dimensic	nless numb	ers and their si	gnificance. (6)	·
- (j			(ii)	Explain in detail about Reynolds's Number, Froude number, Euler's Number, Weber's Number and Mach Number. (10)					

•

•