13/11/13 AN

	,	, 			وم منطقان والمنطق منته في فيلي و فين الفيان و المنازي المنطقة و المنازي و المنازي و المنازي و المناز			
	1	1	i i	1 . 1		1 I i		
Reg. No.:								

Question Paper Code: 33226

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Fourth Semester

Civil Engineering

CE 1252/CE 1255/070100035 - STRENGTH OF MATERIALS

(Regulation 2004/2007)

(Common to B.E. (Part – Time) Third Semester, Regulation 2005)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Define strain energy.
- 2. State Castigliano's second theorem.
- 3. What is meant by an indeterminate beam?
- 4. State Clayperon's theorem of three moments.
- 5. What are compound cylinders?
- 6. State middle third rule.
- 7. Define residual stresses.
- 8. Give the spherical components of stress tensor.
- 9. Define stress concentration.
- 10. Write the Winkler Bach formula.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) A beam 4 cm wide, 8cm deep is freely supported over a span of 2 m. A weight of 5 kg is dropped on to the middle of the beam from a height of 4 cm. Calculate the maximum instantaneous stress and deflection. $E = 2 \times 10^6 kg / cm^2$.

- (b) A cantilever of length L and uniform section carries a point load W at the free end. Find the strain energy stored in the beam and hence calculate the deflection at the free end.
- 12. (a) A fixed beam of span 5m carries a uniformly distributed load of 2 t/m. Find the fixed end moments and the maximum sagging bending moment.

Or

- (b) A continuous beam covers three consecutive spans of 6,8 and 10 meters. The first span carries a UDL of 6 t/m, the second a UDL of 5t/m, and the third a UDL of 4 t/m. Draw the B.M and S.F. diagrams using clayperon's theorem of three moments.
- 13. (a) A thick cylinder of internal diameter 10 cm, external diameter 20 cm, is subjected to an internal pressure of 100 kg/cm². Draw diagrams showing the distribution of radial pressure and hoop stress in the wall of the cylinder.

Or

- (b) The Euler's crippling load for a strut, 75 cm long, 0.75 cm diameter, is 10 kg. Estimate the critical load of a column of the same material, 15 cm diameter, 6meters long, and fixed in a similar manner.
- 14. (a) Find the strain energy stored in a steel bar 250 mm long and of cross section 25 mm \times 6 mm, when it is subjected simultaneously to an axial pull of 20 kN and a compressive stress of 80 N/mm² on its narrow edge. For steel, E=2.04 \times 10⁵N/mm² and 1/m = 0.28.

Or

- (b) Explain the following
 - (i) Maximum shear stress theory
 - (ii) Maximum strain energy theory
- 15. (a) Determine the principal moments of inertia for an unequal angle section $60 \text{ mm} \times 40 \text{ mm} \times 6 \text{ mm}$.

Or

(b) Explain the graphical method of locating principal stresses.