BIS FN

Reg. No.:								

Question Paper Code: 31519

B.E./B.Tech. DEGREE EXAMINATION, JANUARY 2014.

First Semester

Civil Engineering

MA 2111/MA 12/080030001 — MATHEMATICS — I

(Common to All Branches)

(Regulation 2008)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. The product of two eigenvalues of the matrix $A=\begin{bmatrix}6&-2&2\\-2&3&-1\\2&-1&3\end{bmatrix}$ is 16. Find the third eigenvalue.
- 2. Discuss the nature of the quadratic form $2x^2 + 3y^2 + 2z^2 + 2xy$.
- 3. Find the centre and radius of the sphere $2x^2 + 2y^2 + 2z^2 + 6x 6y + 8z + 9 = 0.$
- 4. Prove that the equation $x^2 2y^2 + 3z^2 + 5yz 6zx 4xy + 8x 19y 2z 20 = 0$ represents a cone with vertex (1, -2, 3).
- 5. Find the radius of curvature of the curve $xy = c^2$ at (c, c).
- 6. Find the envelope of the lines $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$, θ being the parameter.
- 7. If $u = \tan^{-1} \left(\frac{x^3 + y^3}{x y} \right)$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$.

- 8. Find the Taylor series expansion of x^y near the point (1,1) upto the first degree terms.
- 9. Evaluate $\int_{0}^{\pi} \int_{0}^{\sin \theta} r dr d\theta$.
- 10. Change the order of integration in $\int_{0}^{1} \int_{0}^{2\sqrt{x}} f(x, y) dy dx$.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) (i) Find the eigenvalues and the eigenvectors of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}.$ (8)
 - (ii) Using Cayley-Hamilton theorem find A^{-1} for the matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$. (8)

Or

- (b) Reduce the quadratic form $Q = 3x^2 3y^2 5z^2 2xy 6yz 6xz$ to its canonical form using orthogonal transformation. Also find its rank, index and signature. (16)
- 12. (a) (i) Find the centre and radius of the circle given by $x^2 + y^2 + z^2 + 2x 2y + 4z 19 = 0$ and x + 2y + 2z + 7 = 0. (8)
 - (ii) Find the equation of the cone whose vertex is the point (1,1,0) and whose base in the curve y = 0, $x^2 + z^2 = 4$. (8)

Or

- (b) (i) Find the condition that the plane lx + my + nz = p may be a tangent plane to the sphere $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$. (8)
 - (ii) Find the equation of the right circular cylinder which passes through the circle $x^2 + y^2 + z^2 = 9$, x + y + z = 3. (8)

- 13. (a) (i) Prove that for the curve $y = \frac{ax}{a+x}$, $\left(\frac{2\rho}{a}\right)^{\frac{2}{3}} = \left(\frac{x}{y}\right)^2 + \left(\frac{y}{x}\right)^2$. (8)
 - (ii) Find the envelope of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a and b are connected by the relation $a^2 + b^2 = c^2$, c being a constant. (8) Or
 - (b) (i) Obtain the equation of the evolute of the curve $x = a(\cos \theta + \theta \sin \theta), y = a(\sin \theta \theta \cos \theta).$ (8)
 - (ii) Prove that the radius of curvature of the curve $xy^2 = a^3 x^3$ at the point (a,0) is $\frac{3a}{2}$. (8)
- 14. (a) (i) If z = f(x, y) and $x = r \cos \theta$, $y = r \sin \theta$ prove that $\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2.$ (8)
 - (ii) Discuss the maxima and minima of $f(x, y) = x^2 + xy + y^2 + \frac{1}{x} + \frac{1}{y}$. (8)

Or

- (b) (i) If $y_1 = \frac{x_2 x_3}{x_1}$, $y_2 = \frac{x_3 x_1}{x_2}$, $y_3 = \frac{x_1 x_2}{x_3}$ prove that $\frac{\partial (y_1, y_2, y_3)}{\partial (x_1, x_2, x_3)} = 4$. (6)
 - (ii) A rectangular box open at the top is to have a capacity of 108 cu.ms. Find the dimensions of the box requiring the least material for its construction. (10)
- 15. (a) (i) Evaluate $\iint xydxdy$ over the region in the positive quadrant bounded by $\frac{x}{a} + \frac{y}{b} = 1$. (6)
 - (ii) Find the value of $\iiint xyzdxdydz$ through the positive spherical octant for which $x^2 + y^2 + z^2 \le a^2$. (10)

Or

- (b) (i) Change the order of integration in $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2} + y^{2}} dy dx$ and hence evaluate it. (8)
 - (ii) Evaluate, by changing to polar co-ordinates, the integral $\int_{0}^{4a} \int_{\frac{y^2}{4a}}^{y} \frac{x^2 y^2}{x^2 + y^2} dx dy.$ (8)