22/11/12PM

Reg. No.:			

Question Paper Code: 75537

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Third Semester

Software Engineering

XCS 232/ 10677 SW 302 — NUMERICAL METHODS

(Common to 5 Year M.Sc. Information Technology/M.Sc. Computer Technology)

(Regulation 2003/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is the demerits of Bisection method?
- 2. What is the condition for applying the fixed point iteration method to find the real root of the equation x = f(x)?
- 3. Define diagonally dominant systems.
- 4. Why Gauss-Seidal is a better method than Jacobi's iterative method?
- State any two properties of divided differences.
- 6. What is the disadvantage in practice in applying Lagrange's interpolation formula?
- 7. Write the order of error in using Simpson's one-third and Trapezoidal rules.
- 8. Write down the expressions for $\frac{dy}{dx}$ at $x = x_n$ using Newton's backward difference formula.
- 9. Solve $\frac{dy}{dx} = x + y$; y(0) = 1, to find y(0.1) using Euler's method.
- 10. Write the finite difference approximations for $\frac{dy}{dx}$.

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Solve $x^3 9x + 1 = 0$ for the root between x = 2 and x = 4 by the bisection method. (8)
 - (ii) Solve by Newton's method the equation $x \log_{10}^x = 1.2$. (8)

Or

- (b) (i) Find the positive root of $x^3 2x 5 = 0$ by the method of false position. (8)
 - (ii) Find a real root of the equation $x^3 + x^2 100 = 0$ using fixed point iterative method. (8)
- 12. (a) Solve the following system of equations using Gauss-Seidal method 4x + 2y + z = 14, x + 5y z = 10, x + y + 8z = 20. (8)
 - (ii) Solve the following system of equations using triangularisation method 8x 3y + 2z = 20,4x + 11y z = 33,6x + 3y + 12z = 36. (8)

Or

- (b) (i) Solve the following system of equations using Gauss-elimination method 10x 2y + 3z = 23,2x + 10y 5z = -33,3x 4y + 10z = 41. (8)
 - (ii) Solve the following system of equations using Jacobi iteration method 5x 2y + z = -4, x + 6y 2z = -1, 3x + y + 5z = 13. (8)
- 13. (a) (i) Find f (8) by Newton's divided difference formula for the following data (8)

						10
x	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2038

(ii) Construct the difference table from the following data

x	50	51	52	53	54
f(x)	39.1961	39.7981	40.3942	40.9843	41.5687

and also obtain f(50.5) using Newton's forward difference formula.

(8)

Or

(b) (i)	Use Lagrange's formula to fit a polynomial to the data						
	x	-1	0	2	3		
	f(x)	-8	3	1	12		

and hence find f(1)

y

2.7183

(ii) Use Stirling's formula to find $\log_{10}^{332.5}$ using the following table of $y = \log_{10}^{x}$ (8)

	810					
x	310	320	330	340	350	360
\log_{10}^{x}	2.4914	2.5052	2.5185	2.5315	2.5441	2.5563

14. (a) (i) From the following table of values of x and y obtain

4.0552

3.3201

$$\frac{dy}{dx} \text{ and } \frac{d^2y}{dx^2} \text{ for } x = 1.2.$$
(8)
$$x \quad 1.0 \quad 1.2 \quad 1.4 \quad 1.6 \quad 1.8 \quad 2.0 \quad 2.2$$

4.9530

6.0496

7.3891

9.0250

(ii) By dividing the range into ten equal parts, evaluate $\int_{0}^{\pi} \sin x \, dx$ by using Simpson's one-third rule. Is it possible to evaluate the same by Simpson's three-eighth rule? (8)

Or

(b) (i) Find f'(0.25) and f''(0.25) from the following data using the method based on divided differences. (8)

1	1000 022 027	laca arrioro				
x	0.15	0.21	0.23	0.27	0.32	0.35
f(x)	0.1761	0.3222	0.3617	0.4314	0.5051	0.5441

- (ii) By dividing the range into ten equal parts, evaluate $\int_{1}^{2} \frac{dx}{x}$ by using Trapezoidal rule and hence deduce the value of \log_{e}^{2} . (8)
- 15. (a) (i) Solve $\frac{dy}{dx} = x y^2$ by Taylor Series method to calculate y at x = 0.4 in two steps given that y(0) = 1. (8)
 - (ii) Using the finite difference method, solve $\frac{d^2y}{dx^2} + y = x$ subject to the boundary conditions y = (0) = 0 and y(1) = 2, by taking h = 0.25. (8)

Or

- (b) (i) Using R-K method of order four, calculate y(0.1) and y(0.2) given that $\frac{dy}{dx} = 1 + \frac{2xy}{1+x^2}$, y(0) = 0. (8)
 - (ii) Using Euler's method, find the solution of the initial value problem $\frac{dy}{dx} = \log(x+y) \text{ given that } y(0=2) \text{ at } x = 0.2,04,0.6.$ (8)