22/11/13 Fr

|           |    | CONTRACTOR OF THE PARTY OF THE |  | all and the |  |     |  |  |
|-----------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------------|--|-----|--|--|
| Reg. No.: | Ta | 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |             |  |     |  |  |
|           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |             |  | NIO |  |  |

## Question Paper Code: 75468

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Third Semester

Software Engineering

## EMA 004 - NUMERICAL METHODS

(Regulation 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A - (10 × 2 = 20 marks)

- 1. State the fundamental theorem to locate the real root of an equation.
- 2. What is the demerits of Bisection method?
- 3. Write the condition for applying Gauss Seidel method to solve the system of linear equations.
- 4. What is partial pivoting?
- 5. What is interpolation?
- 6. Write the properties of divided difference.
- 7. Write the Newton's forward difference formula for  $\frac{dy}{dx}$  at  $x = x_0$ .
- 8. State Simpson's 3/8 rule for numerical integration.
- 9. Write the disadvantage of Taylor's method.
- 10. Using Euler'e method, solve the equation  $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$ , y(1) = 1 at x = 1.1.

## PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) Determine the root of the equation  $xe^x = 3$  using method of False position correct to four decimal places. (16)

Or

(b) Find the root of the equation  $\sin x = 1 + x^3$  between (-2, -1) by Newton's method correct to 4 decimal places. (16)

12. (a) Solve the system by Gauss Jordan method 2x + y + 4z = 128x - 3y + 2z = 204x + 11y - z = 33 (16)

Or

(b) Using Gauss-Jacobi method, solve the system correct to three decimal places

$$x + 17y - 2z = 48$$

$$30x - 2y + 3z = 75$$

$$x + y + 9z = 15$$
(16)

13. (a) Apply Lagrange's interpolation formula to find f(5) and f(6) given that f(1)=2, f(2)=4, f(3)=8, f(4)=16, f(5)=128. (16)

Or

- From the following table, determine the value of f(x) at x = 0.23, 0.29(b) (16)0.26 0.28 0.30 0.20 0.22 0.24 x: 1.6698 1.6804 1.6912 1.7024 1.7139 f(x): 1.6596
- 14. (a) From the table, find the value of  $\frac{dy}{dx}$ ,  $\frac{d^2y}{dx^2}$  at x = 0.8. (16)  $x: 0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0$  $y: 0 \quad 0.12 \quad 0.49 \quad 1.12 \quad 2.02 \quad 3.20$

Or

- (b) Evaluate  $\int_{0}^{1} e^{-x^{2}} dx$  by dividing the range of integration into 10 equal parts using Trapezoidal rule and Simpson's rule. (16)
- 15. (a) Apply Runge-Kutta method of fourth order to find the value of y at x = 0.1 given that  $\frac{dy}{dx} = 3x + \frac{y}{2}$ , y(0) = 1. (16)

Or

(b) Solve the equation y''+y+1=0 with y(0)=0, y(1)=0 using Finite difference method by dividing the interval into four sub intervals. (16)