NI PHEN

Reg. No.:		

Question Paper Code: 75528

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

First Semester

Software Engineering

XCS 114/10677 SW 104 — DIGITAL PRINCIPLES

(Common to 5 Year M.Sc. Information Technology/M.Sc. Computer Technology)

(Regulation 2003/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. How are signed numbers represented in binary form?
- 2. Realise OR gate using only NAND gate.
- 3. Implement a full subtractor with two half subtractors and an external gate.
- 4. Using VHDL model a 2 to 1 Multiplexer.
- 5. How will you convert a JK FF into a T-FF and D-FF?
- 6. What is the difference between latches and flip flops?
- 7. Draw the state diagram of a 2 bit up/down counter.
- 8. What is the difference between serial and parallel transfer?
- 9. Differentiate critical and non critical race.
- 10. How essential Hazards are caused?

PART B - (5 × 16 = 80 marks)

- 11. (a) (i) Represent the decimal number 5136 in
 - (1) BCD
 - (2) Excess-3 code
 - (3) 2421 code and
 - (4) 6311 code.

			$(1) (4310)_5$	
			(2) $(745)_8$	
			(3) $(525)_6$	
			(4) $(189)_{12}$.	(6)
		(iii)	Convert the hexadecimal number 68BE to binary, and then conve it from Binary to Octal.	ert (4)
			. Or	
	(b)	(i)	Express the function $F(A,B,C,D) = D(A'+D) + B'D$ in a summinterms and a product of maxterms.	of (8)
		(ii)	State and prove De Morgan's theorem.	(4)
		(iii)	Find the complement of the Boolean function (BC'+'A') (AB' + CD') and reduce them to a minimum number of literals.	D) (4)
12.	(a)	(i)	Simplify and implement the function	
			F(A,B,C,D) = A'B + A + C' + D' with NAND gates.	(8)
		(ii)	Using k-Map simplify the Boolean function F using don't ca condition d, in	ıre
			(1) SOP and	
			(2) POS form.	
			$F(x,y,z) = \sum (2,3,4,6,7)$	
			$d(x, y, z) = \sum (0,1,5)$	(8)
			Or	
	(b)	(i)	A combinational circuit is defined by the following two functions:	
			$F_1(x, y) = \sum (0,3)$	
			$F_2(x, y) = \sum (1, 2, 3)$	
			Implement the combinational circuit by means of the decoder and external NAND Gates.	(8)
		(ii)	Explain the principles of decimal adder with suitable diagram.	(8)
			2 755	28

(ii) Convert the following numbers with the indicated bases to decimal:

13. (a) Illustrate the procedure involved in state reduction in synchronous sequential logic with an example.

Or

- (b) Explain the different flip flops with suitable logic circuit
- 14. (a) (i) Design a counter with the following binary sequence 0,1,3,2,6,4,5,7 and repeat. Use RS flip flops. (8)
 - (ii) Draw the diagram of a 4 bit binary ripple counter using flip flops that trigger on the positive edge. (8)

Or

- (b) (i) Design a 4 bit Universal shift register and explain its operation. (8)
 - (ii) Model a SISO shift register using VHDL. (8)
- 15. (a) (i) Write an account of reduction of state in Asynchronous Sequential Circuit with a suitable example. (10)
 - (ii) Give the design procedure of Asynchronous Sequential Circuit. (6)

Or

(b) Show that dynamic hazards do not occur in two level AND-OR gate network.