

Reg. No.:								-	37
0	-	1	100	100	3.0	1	7-9		

Question Paper Code: 75494

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Fifth Semester

Software Engineering

ESE 055 — THEORY OF COMPUTATION

(Regulation 2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Given $L = \{a^n b^{n+1} : n \ge 0\}$. Prove or disprove that $L = L^*$ for the given language L.
- 2. Let $\Sigma = \{a, b\}$. Write regular expression for the set of all strings in r with a number of a's divisible by three.
- 3. Define a nondeterministic finite automaton.
- 4. Give a context free grammar generating the set of palindromes over alphabet $\{a, b\}$
- 5. State Pumping theorem for context-free languages.
- 6. What is meant by a Turing machine with two way infinite tape?
- 7. Mention any two problems which can only be solved by Truing machine.
- 8. When a problem is said to be undecidable? Give an example of undecidable problem.
- 9. What do you mean by Universal Turing machine?
- 10. When is a Turing machine said to be polynomially bounded?

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Construct a non-deterministic finite state automaton accepting all strings in {a, b}⁺ with either two consecutive a's or two consecutive b's. (8)
 - (ii) Show that the set $L = \{a^n/b^n/n \ge 1\}$ is not regular. (8)

Or

- (b) (i) Construct an NFA equivalent to the regular expression $(0+1)^*(00+11)(0+1)^*$. (8)
 - (ii) Show that the class of languages accepted by finite automata is closed under concatenation and Kleene star. (8)
- 12. (a) (i) Construct a PDA that recognize the language $\left\{a^{i}bjc^{k}/i, j, k > 0 \text{ and } i = j \text{ or } i = k\right\}$ (8)
 - (ii) Find the left most and right most derivation corresponding to the tree given below: (8)

Or

- (b) (i) Show that $\{0^n 1^n 2^n / n \ge 1\}$ is not a context-free language. (8)
 - (ii) Show that every context-free language is accepted by some pushdown automaton. (8)
- 13. (a) (i) Design a Turing machine to implement proper subtraction. (8)
 - (ii) Find grammar that generates the language $\{a^{2n}: n \ge 0\}$. (8)

Or

(b) Prove that the language L is recognized by a Turing machine with two way infinite tape if and only if it is recognized by a Turing machine with one way infinite tape. (16)

14.	(a)	(i)	Prove that the following problem is undecidable:
			Given a context-free grammar G, is $L(G) = \Sigma^*$? (10)
		(ii)	Explain the Halting problem. Is it decidable or undecidable problem? (6)
			\mathbf{Or}
	(b)	(i)	Show that the class of recursively enumerable languages is not closed under complement. (8)
		(ii)	Show that the following problem is solvable: Given a Turing machine M , an input string w , and a number k , does M use k tape squares on input w ? (8)
15.	(a)	(i)	Show that the traveling salesman problem is in NP. (6)
1		(ii)	Show that $E = \{\text{"M" "w": } M \text{ accepts input } w \text{ after at most } 2^{ w } \text{"/steps} \}$ is not in P . (10)
			\mathbf{Or}
	(b)	(i)	Show that NP is closed under union intersection, concatenation and kleene star. (8)
		(ii)	Write a short note on ambiguity in context free grammar. (8)