1112/13 AM

Dan Ma .		
Reg. No.:		

Question Paper Code: 75551

5 Year M.Sc. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Fifth Semester

Computer Technology

XCS 355/10677 SW 503 — DESIGN AND ANALYSIS OF ALGORITHM

(Common to 5 Year M.Sc. Software Engineering/M.Sc. Information Technology)

(Regulation 2003/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is Big 'Oh' notation?
- 2. What is Binary Search Tree?
- 3. Define the principle of optimality.
- 4. What is the difference between Greedy method and Dynamic programming?
- 5. Identify the articulation points and bi-connected components of the given graph.

- 6. State the applications of BFS and DFS.
- 7. What are Hamiltonian cycles?
- 8. What is Branch and Bound Technique?
- 9. What are Catalan Numbers?
- Draw a diagram to describe the relationship among P,NP, NP- complete and NP-Hard problems.

11. (a) Write down the Merge sort and Quick sort algorithm to sort the following sequences of Keys: 65,70,75,80,85,60, 55,50,45. Also find the recurrence equation and complexity of an algorithms. (16)

Or

- (b) (i) Write an algorithm for Binary search. List the properties of Binary Search Tree. (10)
 - (ii) Discuss techniques and methods to measure the performance of a given algorithm and give examples. (6)
- 12. (a) Solve Knapsack problem using Greedy Technique. (16)

Or

(b) Find a minimum-cost and path from source (s) to destination (t) in the multistage graph given below. Find the minimum-cost first using the forward approach and then using the backward approach. (16)

(a) Write an algorithm to find the reflexive transitive closure matrix A* of a directed graph G. Show that if G has 'n' vertices and 'e' edges and is represented by its adjacency list's then, this can be done in time □(n²+ne). How much space does your algorithm take in addition to that needed for G and A*?
(16)

Or

(b) Write an algorithm to identify an articulation points and to construct bi-connected components. Explain with suitable example. (16)

14.	(a)	(i) Using Backtracking approach, Derive an algorithm problem and apply the algorithm for 8-queen's prefeasible solution.	
		(ii) List the applications of Backtracking method.	(8)
		Or	
	(b)	Solve the Knapsack problem using Dynamic programmin	g techniques. (16)
15.	(a)	(i) State and prove Cooke's theorem.	(8)
		(ii) Discuss the need for Approximation Algorithms.	(8)
		Or	
	(b)	Write short notes on P and NP problems.	(8+8)