

|           | _ |     |     |     |   |                   | NO CONTRACTOR OF THE PARTY OF T | Contract Contract     | Andrew State of the last of th | -                    | The Marie | - |
|-----------|---|-----|-----|-----|---|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|---|
|           |   |     |     |     |   |                   | Add to the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section 1             | 100000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |           |   |
|           |   |     |     |     |   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |           |   |
| Reg. No.: |   | - 1 | - 1 | - 1 |   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 5 ( ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |           |   |
| Dez IVI   | 1 |     | 1   | 1   | 1 |                   | F10 - 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 1         |   |
| B         |   |     |     | - 1 |   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |           |   |
|           |   |     |     |     |   | Carlo Santa Santa | Stranger Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and the second second | LINE CONTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in a minimum and the |           |   |

## Question Paper Code: 82309

#### M.E. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

#### Second Semester

#### Structural Engineering

# ST 9222/ST 922/UST 9122/10211 SE 202 — EXPERIMENTAL TECHNIQUES AND INSTRUMENTATION

(Regulation 2009/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

- 1. Distinguish between Load cell and proving ring.
- 2. Draw Wheatstone bridge circuit to compensate the temperature effects while measuring bending stress in beam specimen.
- 3. Define the term simple harmonic motion.
- 4. What is the use of XY plotter and how does it differ from conventional printer?
- 5. What is the importance of wind tunnel study?
- 6. Define the term Model and when do you resort to model analysis.
- 7. Distinguish between dry and wet corrosions.
- 8. What is implosion and its use?
- 9. Which NDT methods used to assess the surface and core strengths of a concrete?
- 10. Define the term Holography and it use.

### PART B — $(5 \times 16 = 80 \text{ marks})$

| 11. | (a)                                                                                                                                                 | (i)                                                                                                                                                     | How will you capture dynamic strains?                                                                                                                               |              |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|
|     |                                                                                                                                                     | (ii)                                                                                                                                                    | How will you measure pure torque experimentally.                                                                                                                    | (3)          |  |  |  |  |  |  |
|     |                                                                                                                                                     | (iii)                                                                                                                                                   |                                                                                                                                                                     | gular        |  |  |  |  |  |  |
|     |                                                                                                                                                     | Cas                                                                                                                                                     | se No $\in_A (\mu \text{ m/m}) \in_B (\mu \text{ m/m}) \in_C (\mu \text{ m/m}) \in_D (\mu \text{ m/m})$                                                             |              |  |  |  |  |  |  |
|     |                                                                                                                                                     |                                                                                                                                                         | 1 1000 -500 0 500                                                                                                                                                   |              |  |  |  |  |  |  |
|     |                                                                                                                                                     |                                                                                                                                                         | 2 1800 600 -400 800                                                                                                                                                 |              |  |  |  |  |  |  |
|     |                                                                                                                                                     |                                                                                                                                                         | 3 -1000 400 400 -1000                                                                                                                                               |              |  |  |  |  |  |  |
|     |                                                                                                                                                     |                                                                                                                                                         | 4 1600 -200 -1800 0                                                                                                                                                 |              |  |  |  |  |  |  |
|     |                                                                                                                                                     |                                                                                                                                                         | 5 -400 0 400 0                                                                                                                                                      |              |  |  |  |  |  |  |
|     |                                                                                                                                                     |                                                                                                                                                         | Or                                                                                                                                                                  |              |  |  |  |  |  |  |
|     | (b)                                                                                                                                                 | (b) (i) Show that how a single element strain gauge can be employed determine the principal stresses for a circular shaft having a state of pure shear. |                                                                                                                                                                     |              |  |  |  |  |  |  |
|     | (ii) For a simple span beam with two points at equal distance,<br>the strain gauge arrangements to measure bending strain<br>strains and rotations. |                                                                                                                                                         |                                                                                                                                                                     |              |  |  |  |  |  |  |
|     |                                                                                                                                                     | (iii)                                                                                                                                                   | Explain how photo-elastic technique helps in the struct analysis.                                                                                                   | tural<br>(6) |  |  |  |  |  |  |
| 12. | (a)                                                                                                                                                 | (i)                                                                                                                                                     | Explain briefly how Linear Variable Differential Transfor (LVDT) works.                                                                                             | rmer<br>(10) |  |  |  |  |  |  |
|     |                                                                                                                                                     | (ii)                                                                                                                                                    | Discuss which signal (displacement, velocity and acceleration) is the most sensitive to capture the vibration of cantilever beam subjected to harmonic loading. (6) |              |  |  |  |  |  |  |
|     |                                                                                                                                                     |                                                                                                                                                         | Or                                                                                                                                                                  |              |  |  |  |  |  |  |
|     | (b)                                                                                                                                                 | (i)                                                                                                                                                     | Explain the use of digital data acquisition systems.                                                                                                                | (4)          |  |  |  |  |  |  |
|     |                                                                                                                                                     | (ii)                                                                                                                                                    | Explain the working principle of digital type Oscilloscope and mention their applicability.                                                                         |              |  |  |  |  |  |  |
|     |                                                                                                                                                     | (iii)                                                                                                                                                   | Explain the basic principle behind seismographs.                                                                                                                    |              |  |  |  |  |  |  |
|     |                                                                                                                                                     |                                                                                                                                                         | 9                                                                                                                                                                   | 200          |  |  |  |  |  |  |

| 13. | (a) | (i)                                                                                                                       | Draw the strain gauge arrangement in a pressure transducer to measure the laminar flow. (4) |             |  |  |  |  |  |  |
|-----|-----|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------|--|--|--|--|--|--|
|     |     | (ii)                                                                                                                      | Draw a neat sketch showing the different components parts we tunnel                         | vind<br>(5) |  |  |  |  |  |  |
|     |     | (iii)                                                                                                                     | Explain briefly the working principle of a wind tunnel                                      | (7)         |  |  |  |  |  |  |
|     |     |                                                                                                                           | Or                                                                                          |             |  |  |  |  |  |  |
|     | (b) | Discuss the following:                                                                                                    |                                                                                             |             |  |  |  |  |  |  |
|     |     | (i)                                                                                                                       | Importance of transducers in flow measurements                                              | (5)         |  |  |  |  |  |  |
|     |     | (ii)                                                                                                                      | Use of sound level and venture meters                                                       | (6)         |  |  |  |  |  |  |
|     |     | (iii)                                                                                                                     | Direct Model analysis.                                                                      | (5)         |  |  |  |  |  |  |
| 14. | (a) | Disc                                                                                                                      | scuss the following:                                                                        |             |  |  |  |  |  |  |
|     |     | (i)                                                                                                                       | Carbonation and its effects in concrete structures                                          | (6)         |  |  |  |  |  |  |
|     |     | (ii)                                                                                                                      | Explain the term Catholic protection and it importance                                      | (5)         |  |  |  |  |  |  |
|     |     | (iii)                                                                                                                     | Techniques used to measure residual stresses.                                               | (5)         |  |  |  |  |  |  |
|     |     |                                                                                                                           | Or                                                                                          |             |  |  |  |  |  |  |
|     | (b) | (i)                                                                                                                       | Explain how to diagnosis a dilapidated structure                                            | (6)         |  |  |  |  |  |  |
|     |     | (ii)                                                                                                                      | Explain how to demolish a column damaged due to corrosion                                   | (5)         |  |  |  |  |  |  |
|     |     | (iii)                                                                                                                     | Factors which influence the corrosion of steel in concrete.                                 | (5)         |  |  |  |  |  |  |
| 15. | (a) | (i)                                                                                                                       | Explain the use of NDT testing techniques                                                   | (6)         |  |  |  |  |  |  |
|     |     | (ii)                                                                                                                      | Explain how Holography is useful in structural applications purp                            | oose<br>(5) |  |  |  |  |  |  |
|     |     | (iii)                                                                                                                     | Use of ground penetrating radar.                                                            | (5)         |  |  |  |  |  |  |
|     |     |                                                                                                                           |                                                                                             |             |  |  |  |  |  |  |
|     |     |                                                                                                                           | Or                                                                                          |             |  |  |  |  |  |  |
|     | (b) | (i) Explain the basic concept behind the testing of towers and any two places in Tamilnadu where tower testing is carried |                                                                                             |             |  |  |  |  |  |  |
|     |     | (ii)                                                                                                                      | Why are Engineered demolition for high rise dilapidated building not popular in India       | ngs<br>(4)  |  |  |  |  |  |  |
|     |     | (iii)                                                                                                                     | What are the uses of ultrasonic pulse velocity and Rebou                                    | (6)         |  |  |  |  |  |  |