

			1	
D NT.	of the last of			
Reg. No.:				
0				

Question Paper Code: 82322

M.E. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Elective

Structural Engineering

ST 9258/UST 9158/10211 SEE 51 — MECHANICS OF COMPOSITE MATERIALS

(Regulation 2009/2010)

Time: Three hours

Maximum: 100 marks

(8)

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. How are the composite materials classified?
- 2. What are the advantages of ceramic matrix composites?
- 3. State: Hooke's law.
- 4. Are V_{12} and V_{21} independent of each other for a unidirectional orthotropic lamina?
- 5. Define the major Poisson's ratio.
- 6. Distinguish: Specially orthotropic plies and generally orthotropic plies.
- 7. Is a nonzero [B] matrix attributed to the orthotropy of layers?
- 8. Determine the Tsai-Hill failure criteria for pure shear at various angles θ to the principal Material directions.
- 9. What are the applications of composites in various fields?
- 10. State whether natural fiber composites are environmentally superior to glass fiber reinforced composites?

PART B — $(5 \times 16 = 80 \text{ marks})$

- 11. (a) (i) Give a brief historical review of composites.
 - (ii) Compare the flexibility of a 0.3 mm diameter steel wire to 0.6 mm diameter Aluminium wire. The young's modulus of steel is 200 GPa and that of aluminium is 70 GPa. (8)

- (b) (i) Describe any one manufacturing method of polymer matrix composites. (8)
 - (ii) A lamina consists of 100 fibers of 10μ m diameter. The fibers are 10 mm long. Find the interfacial area. What is the increase in the interfacial area if the diameter of the fiber is reduced to 5μ m and the total volume of fibers is kept constant? (8)
- 12. (a) A uniaxial load is applied to a 10° ply. The linear stress-strain curve along the line of load is related as $\sigma_x = 123 \ \varepsilon_x$, where the stress is measured in GPa and strain in m/m. Given $E_1 = 180$ GPa, $E_2 = 10$ GPa and $v_{12} = 0.25$. Find the value
 - (i) shear modulus, G_{12} and (8)
 - (ii) modulus E_x for a 60° ply. (8)

Or

- (b) (i) Reduce the monoclinic stress-strain relationships to those of an orthotropic material. (8)
 - (ii) A lamina is loaded at angles $\theta=30^\circ$ and 45° with the fiber direction, and the corresponding moduli obtained are E_{x30} and E_{x60} , Determine a relationship between E_1, E_2, E_{x30} and E_{x45} . Determine an expression for E_2 in terms of E_{x30} and E_{x45} for $E_1 >> E_2$.
- 13. (a) A cross-ply laminate $[0|90]_s$ made from high strength carbon/ epoxy unidirectional plies and subjected to a tensile membrane longitudinal force of $N_x = 100$ N/mm. Each ply is 0.125 mm thick and have identical properties as given below in Fig. 1. Determine the longitudinal stress and strain. (16)

Fig. 1

Or

- (b) (i) Derive the expressions for the stiffness matrices [A], [B] and [D] for an isotropic material in terms of its thickness, t, Young's modulus, E, and Poisson's ratio, v. (10)
 - (ii) Show that for a symmetric laminate, the coupling stiffness matrix is equal to zero. (6)
- 14. (a) (i) An E-glass/epoxy composite has the following properties of its constituents

$$v_f = 0.65 \ E_{1f} = 70 \ \text{GPa} \ E_m = 3.5 \ \text{GPa}$$

$$F_{1ft} = 3500$$
 Mpa and $F_{mt} = 100$ MPa

Determine the longitudinal modulus of the composite E_1 and longitudinal tensile strength F_{1T} of the composite. (10)

- (ii) Find the Tsai-Hill failure criteria for pure shear at various angles θ to the principal material directions. (6)
- (b) (i) The loading axis is inclined at an angle θ to the fibre axis. Tension along they axis is the only load applied. Using maximum strain criteria, Determine F_{mt} and θ so that prediction of inplane shear and tensile failure load coincide. (8)
 - (ii) A lamina is loaded as shown Fig 2. Using Tsai-Wu failure criterion, determine F_0 . (8)

Fig 2

- 15. (a) (i) Explain the geometry and stress variation of adhesive joint with a neat diagram. (12)
 - (ii) Write the advantages and disadvantages of Mechanical joints. (4)
 Or
 - (b) (i) Describe about the mode of failure of mechanical joints. (8)
 - (ii) What are the factors affecting the laminate selection for fibre reinforced polymer? (8)