Reg. No.		 ; 			······································	· · · · · · · · · · · · · · · · · · ·	1	 ! ! ! !	;
0	 <u> </u>	 <u> </u>	<u></u>	 	<u> </u>	À		<u> </u>	

Question Paper Code: 81348

M.E./M.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2013.

Elective

Computer Science and Engineering

CS 9264/CS 964/UCP 9164/10244 CSE 51 — DATA WAREHOUSING AND DATA MINING

(Common to M.E. Networking and Internet Engineering/M.E. Software Engineering/M.Tech. Information Technology and M.Tech Multimedia Technologies)

(Regulation 2009/2010)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

 $PART A - (10 \times 2 = 20 \text{ marks})$

- 1. What is the use of knowledge base in data mining system?
- 2. How is a data warehouse different from a database?
- 3. Describe the method of generating frequent item-sets without candidate generation.
- 4. Give few techniques to improve the efficiency of Apriori algorithm.
- 5. How is classification different from prediction?
- 6. What is attribute selection measure?
- 7. Differentiate between agglomerative and divisive hierarchical clustering.
- 8. What do you mean by cluster analysis?
- 9. Define spatial database.
- 10. What kind of association can be mined from multimedia data?

11. (a) With the help of neat diagrams, explain the three data warehouse schemes.

Or

- (b) State why, for the integration of multiple heterogeneous information sources, many companies in industry prefer the update-driven approach rather than query-driven approach. Describe situations where the query driven approach is preferable over the unpdate-driven approach.
- 12. (a) Find all the frequent itemsets for the following transactional database using apriori algorithm. The minimum support given is 20%. Also find strong association rules from the largest frequent itemsets with respect to 60% minimum confidence.

Transaction_id	Items in transaction			
1	3,4			
2	2,3			
3	1,2, 3,5			
4	2,5			
5	1,2			
6	1,3			
. 7	2			
8	1,3			
9	1,2,3			
10	1,3			
	\mathbf{Or}			

(b) For the database given below discover all frequent itemsets using FP tree algorithm with minimum support count = 2 transactions.

Tid	Items
1	2,3,5,6
2	1,4,5
3	2,3,4
4	1,3,4,5,6
5	2.3.4.5.6

13.	(a)	For th	ne table giv	en halow	dotomino the	est split attrionte les lires level		
10.	(α)	in cor	ic table giv	a decision	tree using inform	nation gain (entropy) appreach		
	rid	age				Class: buys compates		
	1	<30	high	no	fair	n_0		
	2	<30	high	no	excellent	no		
	3	30-40		no	fair	yes		
	4	>40	medium	no	fair	yes		
	5	>40	low	yes	fair	yes		
	. 6	>40	low	yes	excellent	no		
	7	30-40	low	yes	excellent	yes		
	8	<30	medium	no	fair	no		
	9	< 30	low	yes	fair	yes		
	10	>40	medium	yes	fair	yes		
	11.	<30	medium	yes	excellent	yes		
	12	30-40	medium	no	excellent	yes		
	13	30-40	high	yes	fair	yes		
	14	>40	medium	no	excellent	no		
,					\mathbf{Or}			
	(b)				vhich handles n two classes.	the non-linear data sets by		
14.	(a)	Cluster the following eight points (with (x,y) representing locations) into three clusters A1 $(2, 10)$ A2 $(2,5)$ A3 $(8,4)$ A4 $(5, 8)$ A5 $(7, 5)$ A6 $(6,4)$ A7, $(1,2)$ A8 $(4, 9)$. Initial cluster center are : A1 $(2,10)$, A4 $(5,8)$ and A7 $(1,2)$.						
		Note: Use Manhattan distance function to find the dissimilarity.						
		Use k-means algorithm to find the three cluster centers after second iteration.						
					\mathbf{Or}			
	(b)	What is an outlier? Describe any three computer based outlier detection techniques.						
15.	(a)	TF-IDF has been used as an effective measure in document classification.						
		(i) Give one example to show that TF-IDF may not be always a good measure in document classification. (8)						
		(ii)						
					\mathbf{Or}			
	(b)	Write short notes on the following:						

(6)

Web usage mining

(iii) Mining web page layout structure.

(5)