123456					
С		Reg. No. :			
	Question Paper Code: 51U04				
M.E. DEGREE EXAMINATION, NOV 2018					
First Semester					
Structural Engineering					
15PSE104 - STABILITY OF STRUCTURES					
(Wood chart and Stability functions table may be permitted)					
(Regulation 2015)					
Duration: Three hours Maximum: 100 Marks					
Answer ALL Questions					
PART - A $(5 \times 1 = 5 \text{ Marks})$					
1.	Effective Length of	a fixed – hinged column	is	CO1- R	
	(a) 0.707 L	(b) L/2	(c) 2L	(d) L	
2.	In Richardson extrapolation scheme the error (e) of approximate CO2 -R solution is proportional to				
	(a) h	(b) h^2	(c) h/2	(d) h^3	
3.	In a beam-column for constant transverse load the load deflection CO3- R curve is				
	(a) Parabolic	(b) Linear	(c) cubic parabola	(d) horizontal	
4.	4. Critical load of a portal frame for very high values of girder stiffness CO4 -R and it can sway is				
	(a) P_E	(b) $\frac{1}{4} P_{E}$	(c) $2P_{\rm E}$	(d) $4P_E$	
5.	In Buckling Analys	is of Thin Plates	is negligible.	CO5- R	
	(a) Normal Stress	(b) Normal Strain	(c) Shear Strain	(d) All the above	
PART - B (5 x 3 = 15 Marks)					
6.	Explain the concept	concepts of equilibrium (Stability).		CO1-U	
7.	Determine Δ^3 fi.	Determine Δ^3 fi.		CO2-App	
8.	Write the slope defl	ection equation for a beau	m – column.	CO3-U	
9.	Sketch neatly the di	fferent buckling modes o	f a portal frame for very	low and CO4-U	
	very large values of girder stiffness with side sway permitted and also prevented.				

10. Explain the mechanism by which a plate can carry load even after buckling. CO5-U

 $PART - C (5 \times 16 = 80 Marks)$

11. (a) Determine the buckling load of a hinged - hinged column by CO1- App (16) Equilibrium approach.

Or

- (b) Determine the buckling load of a fixed- hinged column by CO1- App (16) Equilibrium approach.
- 12. (a) Using Rayleigh-Ritz method determine the buckling load of a CO2- App (16) hinged- hinged column whose moment of Inertia for top and bottom quarter portion is I_0 and middle half portion is $4I_0$.

Or

- (b) Determine the critical load of a fixed hinged column by galerkin's CO2- App (16) method. Take $y = A(l^3x 3lx^3 + 2x^4)$
- 13. (a) Derive the slope deflection equation for a beam column.CO3-App(16)

Or

- (b) Determine the maximum deflection & moment of a beam-column CO3-App (16) subjected to UDL over the full span using Rayleigh ritz method.
- 14. (a) Using Equilibrium approach determine the critical load of a portal CO4 App (16) frame subjected to symmetrical loading and sides way is permitted. Take EI and L for beam and column are same.

Or

- (b) Compute the critical load of the frame shown in figure. EI & *l* are CO4 -App (16) same for both the members. For $\alpha_n = 1.678$ & $\alpha_f = 2.779$ $\phi = 1.407$; For $\alpha_n = 1.224$ & $\alpha_f = 2.98$ $\phi = 1.6$
- 15. (a) Derive the general governing differential equation for buckling of CO4 App (16) thin plates subjected to biaxial tensile force along with shear.

Or

(b) Find the critical load of a uniaxially compressed square plate, fixed CO5-App (16) along all the edges using energy method.