С		Reg. No. :											
C													
	Question Paper Code: 51Q01												
	M.E. DEGREE EXAMINATION, NOV 2018												
	First Semester												
	Computer Science and Engineering												
15PCS101 -ANALYSIS OF ALGORITHMS AND DATA STRUCTURES													
(Regulation 2015)													
Dur	Duration: Three hours Maximum: 100 I								00 M	larks	1		
Answer ALL Questions													
PART - A (5 x $1=5$ Marks)													
1.	Tree of Recursive calls made by the recursive algorithm for the										CC	01 - R	
	(a) Smothness rule (b) Tower of Hanoi puzzle												
	(c) Assertive rule (d) None of the above												
2.	A deap is a double-ended heap that supports the double-ended priority operations of										CC	02 -R	
	(a) Insert	(b) Delete-min	(c) De	elete	-max		(d)	Merg	ge			
3.	A Simple path from a every node to a descendant leaf contains the same number ofnodes.										CC)3- R	
	(a) Black	(b) White	(c) Red black					(d) Black white					
4.	A is an ordered tree data structure to hold a list of points.										CC	04 -R	
	(a) Segment tree (b) Convex tree			(c) Range tree					(d) Dimensional array				
5.	is an imperfect model that will only tangentially relate to the performance on a real parallel machine.										CC)5- R	
	(a) PRAM	a) PRAM (b) PRAM ER (c) PRAM CR						(d) PRAM WR					
		PART – B (5 2	x 3=	15 N	larks	5)							
6.	Define Recurrence Equation. Name the three efficiency cases.										CO	01 - U	
7.	Define Deap.Name the functions used by Deap insert property.							CO2-U					
8.	Define Red Black tree with example.							CC)3- U				

- 9. Define Line Segment Intersection.
- 10. Define Flynn's Classifications.

PART – C (5 x 16= 80 Marks)

11. (a) Solve mathematical analysis of Recursive Algorithm using CO1- App (16) Factorial function F(n)=n!. for an arbitrary nonnegative integer n

Or

- (b) Consider the useful property of solving the Asymptotic Notation by CO1- App (16) the analogeous assertions are true for the Ω and Θ notations as well.
- 12. (a) Compute the problem for Min/Max Heap show the result of CO2- App (16) inserting 10,90,78,25,,20,30,40,62,68,70 and 45,one at a time,into initially empty heap.

Or

- (b) Show the result for delete min and delete max operation CO2- App (16) formin/max heap ,atleast delete 3 min value and delete 3 max value.
- 13. (a) Construct the AVL tree for the days in a week and check the trees CO3-App (16) are balanced.

Or

- (b) Construct AVL tree for the months in a year and check the trees are CO3-App (16) balanced.
- 14. (a) Explain line segment interaction and show briefly about the CO4 -U (16) problem analysis

Or

- (b) Explain Efficiency measures in Range trees and list out the 1D and CO4 -U (16) 2D Range.
- 15. (a) Explain Matrix multiplication .Name the Power and Transpose of a CO5-U (16) matrix

2

Or

(b) Explain PRAM and give memory access types of PRAM in detail. CO5-U (16)

51Q01

CO4-U