A Reg. No. :							
--------------	--	--	--	--	--	--	--

Question Paper Code: 53703

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Third Semester

		Mechanical	Engineering		
	15UN	ME303 - ENGINEERI	NG THERMODYNA	AMICS	
		(Regulat	tion 2015)		
Dur	ation: Three hours		L Questions x 1 = 10 Marks)	Maximum: 100 M	I arks
1.	The Second law of th		CO1- R		
	(a) Temperature	(b) Entropy	(c) Enthalpy	(d) Work	
2.	2. The unit of power in SI unit is				CO1- R
	(a)Watt	(b)Nmm	(c) Nm	(d) Pa	
3.	The co-efficient of po	erformance of the refr	igerator is the ratio of		CO2- R
	(a) Heat input	(b) Work output	(c) Work input	(d) Heat reject	eted
4.	4. The PMM- I kind violateslaw of thermodynamics			CO2- R	
	(a) Zeroth	(b) First	(c) Second	(d) Third	
5.	5. The thermodynamic cycle used in Steam power plant is				CO3- R
	(a) Otto cycle	(b)Rankine cycle	(c) steam cycle	(d) None of t	hese
6.	In throttling process,	which property remai	ns constant		CO3- R
	(a) Pressure	(b) Temperature	(c) Enthalpy	(d) Entropy	
7.	7. Characteristic gas constant of a gas is equal to				CO4- R
	(a) $C_P - C_v$	(b) $C_P + C_v$	(c) C_P / C_v	(d) $C_P * C_v$	

8.	Clap	peyron equation	on is applicable for		(CO4- R	
	(a) Saturation point of vapour		(b) Saturation point of li	quid			
	(c) T	Triple point		(d) Boiling point			
9.		dry bulb tem al to	perature is equal to We	et bulb temperatue at RH is	(CO5- R	
	(a) 100 % (b) 50 %		(c)0 %	(d)None of these			
10.	In se	ensible coolin	g process,tem	perature remains constant.	(CO5- R	
	(a) Wet bulb (b) Dry bulb			(c) Dew point	(d) None of these		
11.	Dist	inguish betwe	PART – B een point and path fund	(5 x 2= 10 Marks)	(CO1- R	
12.							
13.	·					CO3- R	
14.	Wri	te down the v	(CO4- R			
15.	1			CO5- R			
		J		C (5 x 16= 80 Marks)			
16.	(a)	piston so the volume $p = U = 34 + 3.1$ metres. If th $0.06 \text{ m}^3 \text{ w}$	at the pressure in the a + bV. The internal e 15 pV. Where u is in ke fluid changes from	r by spring loaded frictionly fluid is a linear function of energy is defined by the relation Pa, p is in kPa and v is in cultivation 170 kPa, 0.03 m ³ to 400 kPa than that done on the pistopeat transfer.	the ion bic Pa,	(16)	
			Or				
	(b)	Apply the co	oncept of first law of the	nermodynamics to the open	CO1- App	(16)	
		flow system	and derive the Steady	Flow Energy Equation.			
17.	(a)	Establish Cl irreversible		ate its value for reversible a	and CO2- App	(16)	
	(b)	900° C and	at engine operates bet	ween the temperature limits st rate of heat rejected from		(16)	

18. (a) The steam at 20 bar and 350 ° C is admitted into a steam turbine CO3- App of a Rankine cycle where it is expanded is entropically to a back pressure of 0.1 bar. Assume all ideal processes; determine the work done per kg of steam and efficiency of the rankine cycle.

Or

- (b) A vessel of volume 0.04 m³ contains a mixture of saturated water CO3- App and saturated steam at a temperature of 250° C. The mass of water is 9 kg. Determine pressure, specific volume, specific entropy and specific enthalpy of the mixture.
- 19. (a) Deduce maxwell's relations and state their uses. CO4- U (16)

Or

- (b) Derive Clausius cleyperon equations and explain its CO4- U (16) significances.
- 20. (a) Atmospheric air at 1.0132 bar has 20°c DBT and 65% RH Find CO5- App (16) the humidity ratio, new point temperature, degree of saturation, enthalpy of mixture, density of air and density of vapour.

Or

(b) Determine the properties of air at atmospheric pressure (1.01325 CO5- App bar) has a dry bulb temperature of 32°C and wet bulb temperature of 24° C.