	Α	Reg. No. :											
		Question Pa	per (Cod	e: 5	670	3						
B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018													
		Sixth	Seme	ester									
		Mechanic	al Eng	ginee	ring								
	15	5UME603 - HEAT	AND	MAS	SS T	RAN	ISFE	ER					
		(Regul	ation	2015	5)								
	(Approved Heat	and Mass Transfer	Data	Book	x & S	Steam	n Tał	oles	are a	llow	ed)		
Dur	ation: Three hours							Max	kimu	m: 1	00 N	Iarks	5
		Answer A	LL Ç	Juest	ions								
1.	PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$ The heat of sun reaches to us according to								CO	1- I			
	(a) Conduction	(b) Convection		(c) F	Radia	tion			(d)	Non	e of '	Thes	e
2.	Thermal conductivity	y of a solid met	al w	ith r	ise	in to	emp	eratu	re			CO	1- I
	(a) Increases	(b) Decreases	(c) Re	emai	ns sa	me		((d) U	Jn pr	edict	ed
3.	The value of Prandtl number for air is about										CO	2- I	
	(a) 0.1	(b) 0.3	(c) 0.	7					(d) 1	.7		
4.	The unit of overall co	efficient of heat trai	nsfer	is								CO	2- I
	(a) W/m^2K	(b) W/m ²	(c) W	/mK				(d) W	//m		
5.	Sensible heat is the heat required to											CO	3- I
	(a) Change vapour into liquid			(b) Change liquid into vapour									
	(c) Heat the water up	(d) Heat the water above to its boiling point											
6.	The automobile radiat	ger of CO								3- J			
	(a) Parallel flow type			(b) Counter flow type									
	(c) Cross flow type		(d) Regenerator type										

7.	Heat transfer by radiation mainly depend (a) Its temperature	ls upon (b) Nature of the body	CO4- R						
	(c) Kind and extent of its surface	(d) All of these							
8.	The amount of radiation must be depends		CO4- R						
	(a) Nature of the body	(b) Temperature of the	ne body						
	(c) Type of surface of the body	(d) All of the above							
9.	In a solution containing 0.30 Kg mole solvent, the molality is		CO5- R						
	(a) 2.0 (b) 0.5	(c) 0.6	(d) 1.0						
10.	The condition for Laminar Flow for H Forced Convection, if the Reynolds Num		CO5- R						
	(a) < 2300	(b) $<5 \times 10^5$							
	(c) >2300	$(d) < 10^7$							
$PART - B (5 \times 2 = 10 Marks)$									
11.	State Fourier's law of conduction		CO1- R						
12.	Define Prandtl Number.		CO2- U						
13.	What is meant by fouling factor?		CO3- U						
14.	State Kirchoff's law of radiation		CO4- R						
15.	What is Schmidt Number?.		CO5- R						

$PART - C (5 \times 16 = 80 Marks)$

16. (a) The wall of an oven consists of 3 layers of brick. Inside one is CO1-App (16) built of 20 cm of fire bricks surrounded by 10 cm of insulating brick and outside layer is binding bricks of 12 cm thick. The oven operates at 900°C, such that the outside surface of the oven is maintained at 60°C. Calculate: (i) The heat loss per m² in surface. (ii)The interfacial temperature. Given the thermal conductivity of fire brick, insulting brick and binding are 1.2, 0.26 and 0.68 respectively in W/m°C

Or

(b) A wire of 6 mm diameter with 2 mm thick insulation CO1-App (16) (K = 0.11 W/mK). If the convective heat transfer co-efficient between the insulating surface and air is 25 W/m²L, find the critical thickness of insulation. And also find the percentage of change in the heat transfer rate if the critical radius is used.

17. (a) Air at 20° C at atmospheric pressure flows over a flat plate at a CO2- App (16) velocity of 3.5 m/s. If the plate is 0.5 m wide and at 60° C , Calculate the following at x =0.4 m. (i) boundary layer thickness (ii) local friction coefficient (iii) average friction coefficient (iv) shearing stress due to friction (v) thermal boundary layer thickness (vi) local convective heat transfer coefficient (vii) average heat transfer coefficient (viii) rate of heat transfer

Or

- (b) A thin 100 cm long and 10 cm wide horizontal plate is maintained CO2- App (16) at a uniform temperature of 150°C in a large tank full of water at 75°C. Estimate the rate of heat to be supplied to the plate to maintain constant plate temperature as heat is dissipated from either side of plate.
- 18. (a) An aluminum pan of 15 cm diameter is used to boil water and the CO3- App (16) water depth at the time of boiling is 2.5 cm. The pan is placed on an electric stove and the heating element raises the temperature of the pan to 110^{0} C. Calculate the power input for boiling and the rate of evaporation. Take $C_{sf} = 0.0132$.

Or

- (b) A condenser is to designed to condense 600 kg/h of dry saturated CO3- App (16) steam at a pressure of 0.12 bar. A square array of 400 tubes, each of 8 mm diameter is to be used. The tube surface is maintained at 30°C. Calculate the heat transfer coefficient and the length of each tube.
- 19. (a) Assuming sun to be black body emitting radiation at 6000 K at a CO4- Ana (16) mean distance of 12×10^{10} m from the earth. The diameter of the sun is 1.5×10^{9} m and that of the earth is 13.2×10^{6} m. Calculation the following.
 - 1. Total energy emitted by the sun.
 - 2. The emission received per m^2 just outside the earth's atmosphere.
 - 3. The total energy received by the earth if no radiation is blocked by the earth's atmosphere.
 - 4. The energy received by a 2×2 m solar collector whose normal is inclined at 45° to the sun. The energy loss through the atmosphere is 50% and the diffuse radiation is 20% of direct radiation.

- (b) Two large parallel plates having emissivity's of 0.4 and 0.7 are CO4- Ana (16) maintained at a temperature of 600 K and 900 K respectively. A radiation shield having an emissivity of 0.05 on both sides is placed between two plats. Calculate (i) temperature of shield, (ii) ratio of heat transfer rate without shield to with shield
- 20. (a) Hydrogen gases at 3 bar and 1 bar are separated by a plastic CO5- App (16) membrane having thickness 0.25 mm. the binary diffusion coefficient of hydrogen in the plastic is 9.1×10^{-3} m²/s. The solubility of hydrogen in the membrane is 2.1×10^{-3} kg-mole/m³bar. An uniform temperature condition of 20° is assumed.

Calculate the following

- 1. Molar concentration of hydrogen on both sides
- 2. Molar flux of hydrogen
- 3. Mass flux of hydrogen

Or

(b) Dry air at 20° C (ρ =1.2 Kg/m³, v=15 x 10^{-6} m²/s, D=4.2 x 10^{-5} CO5- App (16) m²/s) flows over a flat plate of length 50cm which is covered with a thin layer of water at a velocity of 1 m/s. Estimate the total mass transfer coefficient at a distance of 10cm from the leading edge and the average mass transfer coefficient.