A
\mathbf{A}
1 B

Reg. No.:					

Question Paper Code: 57703

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Seventh Semester

Mechanical Engineering

15UME703- MECHATRONICS

(Regulation 2015)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

PART A - $(10 \times 1 = 10 \text{ Marks})$

1.	Mechatronics is an int	erdisciplinary field of			CO1- R
	(a) Mechanical and El	ectrical			
	(b) Mechanical and In	formation technology			
	(c) Electronics and Inf	formation technology			
	(d) Mechanical, Electr	onics and Information	technology		
2.	Inductive pressure tran	nsducers are used to m	easure		CO1- R
	(a) Temperature	(b) Flow	(c) Pressure	(d) Level	
3.	In a clock mechanism hour hand is	n, the gear train used	to connect minute hand to		CO2- U
	(a) Epicyclic gear train	n	(b) Reverted gear train		
	(c) Compound gear tra	ain	(d) Simple gear train		
4.	Identify the belt driv	ve that doesn't under	go slip while transmitting		CO3- U
	(a) Timing	(b) Round	(c) V- Belt	(d) Cross	

5.	Which of the following block?	ing is not an eleme	ent of a mechanical building	9	CO3- R
	(a) Capacitor	(b) Dashpot	(c) Mass	(d) Spring	3
6.	If the hydraulic resis then the pressure diffe		stem building block is more be will be	2,	CO3- U
7.	(a) Less PLC stands for	(b) More	(c) Zero	(d) Equal	CO4- R
	(a) Preventive Logic (Controller	(b) Programmable Logic	Controller	
	(c) Programmable Log	gic Computer	(d) Personal Laser Contro	oller	
8.	A counter that starts if zero is known as the	from a specified nur	mber and increments down to	o	CO4- R
	(a) Up counter		(b) Down counter		
	(c) Reset counter		(d) Synchronizing counter	er	
9.	In general, design pro-	cess starts with	of the product		CO5- R
	(a) Analysis	(b) Solution	(c) Resale value	(d) Need	
10.	The oxygen sensor in	engine management	t system is made up of		CO5- R
	(a) Aluminium oxide	with porous platinur	m electrodes		
	(b) Zirconium oxide v	vith porous platinum	n electrodes		
	(c) Titanium oxide wi	th porous platinum	electrodes		
	(d) Sodium oxide with	n porous platinum el	ectrodes		
		PART – B (5	5 x 2= 10Marks)		
11.	Define sensor				CO1- R
12.	. List the three types of control valves			CO2- R	
13.	Interpret thermal capa	citance in thermal sy	ystem building block		CO3- U
14.	Recall the function of	counter			CO4- R
15.	List four sensors used	in Engine Managen	nent System		CO5- R

PART - C	$(5 \times 16 =$	80Marks))
----------	------------------	----------	---

16.	(a)	(i) Compare sensors and transducers with examples.	CO1- U	(4
		(ii) Explain the elements of closed loop control system	CO1- U	(12
		Or		
	(b)	 (i) Interpret how does LVDT measure displacement. (ii) Explain the working of following sensors: Pressure sensor Temperature sensor 	CO1- U CO1- U	(4 (12
		• Light sensor		
17.	(a)	Illustrate the working principle of direction control valve based on actuating methods. Give examples for each method of actuation.	CO2- U	(16)
		Or		
	(b)	Explain the principles of operation of belt and chain drive systems with suitable schematics.	CO2- U	(16)
18.	(a)	Design building blocks for translational and rotational system. Also, derive the relationship between their input and output.	CO3- App	(16)
		Or		
	(b)	Construct a PID controller and derive equations for its controller output and transfer function.	CO3- App	(16)
19.	(a)	Exemplify the architecture of PLC and describe its I/O processing.	CO4- U	(16)
		Or		
	(b)	Summarize how data are handled in PLC with necessary illustrations.	CO4- U	(16)
20.	(a)	Design a mechatronic circuit for pick and place robot application. Also, explain how solenoid valves controls the movements of robot unit.	CO5- App	(16)
	(b)	Or Design an automatic car park barrier system with necessary	CO5- Ann	(16)
	(0)	mechatronics elements and explain its Robot control.	COJ- App	(10)