-		
Reg.	No	٠
nug.	110.	٠

Question Paper Code: 54704

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Fourth Semester

Mechanical Engineering

15UME404 - THERMAL ENGINEERING

(Regulation 2015)

(Steam Table and Refrigeration tables are permitted)

Dura	ation: Three hours			Maximum: 10	0 Marks
Answer ALL Questions					
PART A - (10 x 1 = 10 Marks)					
1.	The compression ratio of an IC engine is the ratio of CO			CO1- R	
	(a) Swept volume to clearance volume				
	(b) Total cylinder volume to clearance volume				
	(c) Total cylinder volume to swept volume				
	(d) Pressure after compression to that before compression				
2.	For same compression	n ratio			CO1- R
	(a) η otto > η diesel	(b) η otto < η diesel	(c) η otto = η diesel	(d) Un predic	table
3.	Spark plug is used in				CO2- R
	(a) Petrol engine	(b) Gas engine	(c) Marine engine	(d) Diesel en	gine
4.	In engines heat energy	y converted into			CO2- R
	(a) Chemical energy		(b) Mechanical energy	/	
	(c) Electrical energy		(d) Heat energy		
5.	For dry steam, polytro	ophic index value (n) is	5		CO3- R
	(a) 1.335	(b) 1.435	(c) 1.135	(d) 1.113	
6.	The process of ma various load condition		f the turbine constant	for	CO3- R
	(a) Bleeding	(b) Reheating	(c) Governing	(d) Super	heating

7.	7. In a reciprocating compressor one should aim at compressing the air CO4- F			CO4- R
	(a) Adaibatically	(b) Isentropically	(c) Isothermally	(d) Polytropically
8.	In compressors, comp	pression and expansion	n takes	CO4- R
	(a) Constant volume	process	(b) Constant pressure proce	ess
	(c) Constant temperat	ture process	(d) Polytropic process	
9.	. Refrigeration is the process of maintaining the temperature		CO5- R	
	(a) Below the surrour	nding	(b) Above the surrounding	
	(c) Equal to surround	ing	(d) Above the atmosphere	
10.	10. In a window air conditioner the expansion device used is		CO5- R	
	(a) Capillary tube		(b) Float valve	
	(c) Thermostatic expa	ansion device	(d) Automatic expansion va	alve
PART - B (5 x 2 = 10 Marks)				
11. What is the effect of cutoff ratio on the efficiency of diesel cycle when the CO1- F compression ratio is kept constant?		e CO1- R		
12.	2. Classify IC engines according to cycle of operation.		CO2- R	
13.	3. What is meant by compounding of steam turbine?		CO3- R	
14.	14. Why clearance is necessary and what is its effect on the performance of reciprocating compressor?		CO4- R	
15.	What is the function of system?	of the throttling value	in vapour compression refrige	eration CO5- R
PART – C (5 x 16= 80Marks)				
16.	at the beginning	• 1	sure and temperature of air and 40°c. The temperature	CO1- App (16)

at the beginning of the cycle are 1 bar and 40°c. The temperature before and after the heat supplied are 400°c and 1500°c. Find the air sandard efficiency and mean effective pressure of the cycle. What is the power output if it makes 100 cycles/min.

Or

	(b)	An ideal dual cycle engine works with a stroke volume of 10 liters of air with a compression ratio of 16. The pressure and temperature of air before isentropic compression is 1 bar and 300K respectively. If the heat is added at a constant pressure of 70 bar and for 5 % of the stroke, determine (i) Pressure ratio (ii) Cut-off ratio (iii) Mass of air contained in the cylinder (iv) Heat added per cycle (v) Heat rejected per cycle (vi) work done per cycle (vii) Thermal efficiency of the cycle (viii) Mean effective pressure.	CO1- App	(16)
17.	(a)	Explain with neat sketch two stroke petrol engine and four stroke diesel engine. Or	CO2- U	(16)
	(b)	Explain the working of Battery Ignition system with neat sketch	CO2- U	(16)
	(-)			()
18.	(a)	Derive the expression for mass flow rate takes place in steam nozzle.	CO3-U	(16)
	$\langle 1 \rangle$	Or	CO2 11	(1.6)
	(b)	With a neat diagram explain impulse and reaction turbine and compare.	03-0	(16)
19.	(a)	A single acting two-stage air compressor deals with $4m^3/min$ of air at 1.013 bar $15^{\circ}C$ with a speed of 250 rpm. The delivery pressure is 80 bar. Assuming complete inter cooling. Find the minimum power required by the compressor and the bore and stroke of the compressor. Assume a piston speed of 3 m/s, mechanical efficiency of 75% and volumetric efficiency of 80% per stage. Assume the polytrophic index of compression in both the stages to be n = 1.25 and neglect clearance.	CO4- App	(16)

Or

- (b) A single acting air compressor has a bore and stroke of both CO4- App (16) 100 mm and runs at 350 rpm. The clearance volume is 75c.c. and the index of compression and expansion is 1.23. The suction pressure is $0.95 \times 10^5 \text{ N/m}^2$ and the delivery is $7\times10^5 \text{ N/m}^2$. Calculate the volume of free air at 10^5 N/m^2 and 20^0C dealt with per minute and temperature at end of compression if the temperature at the start of compression is 30^0C .
- 20. (a) Explain the construction and working of the vapour absorption CO5-U (16) refrigeration system with neat sketch.

```
Or
```

(b) An air conditioning plant is to be designed for a small office for CO5- App (16) winter conditions:

Out-door conditions: Out-door conditions = 10° C DBT and 8° C WBT Required indoor conditions = 20° C DBT and 60% RH Amount of air circulation = $0.3 \text{ m}^3/\text{min./person}$ Seating capacity of the office = 50 persons The required conditions is achieved first by heating and then by adiabatic humidifying. Find: Heating capacity of the coil in KW and capacity of the humidifier.