Reg. No. :		
------------	--	--

Question Paper Code: 55704

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Fifth Semester

Mechanical Engineering

15UME504 - OPERATIONS RESEARCH

(Regulation 2015)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

PART A - (10 x 1 = 10 Marks)

1.	The mathematical techn in an optimum manner	CO1- R		
	(a) Operation research	(b) Linear programming	(c) Network analysis	(d) Queuing theory
2.	In the simplex method be	for solving of LPP, the m	umber of variables can	CO1- R
	(a) Not more than three	e (b) At least two	(c) At least three	(d) None of them
3.	North- west corner refe	ers to		CO2- R
	(a) Top left corner	(b) Top right corner	(c) Both of them	(d) None of them
4.	The method salesman problem.	used to obtain optimum	solution of travelling	CO2- R
	(a) Simplex	(b) Dominance	(c)Hungarian	(d) Graphical
5.	CPM is			CO3- R
	(a) Time oriented	(b) Event oriented	(c) Activity oriented	(d) Target oriented
6.	event represent	s beginning of more than c	one activities.	CO3- R
	(a) Burst	(b) Dummy	(c) Merge	(d) None of them

7.	An example of shrinkage costs includes CO4- R						
	(a) Income freight	(b) Storage costs	(c) Insurance	(d) Clerical errors			
8.	The time period betw as	veen placing an order its	receipt in stock is known	CO4- R			
	(a) Lead time	(b) Carrying time	(c) Shortage time	(d) Over time			
9.	In a M M 1 queue,	the service rate is		CO5- R			
	(a) Poisson	(b) Exponential	(c) Linear	(d) None of these			
10.	Simulation is basical	ly a technique which is us	sed for	CO5- R			
	(a) Optimisation	(b)Testing alternatives	(c) Cost minimization	(d) Computerisation			
		PART – B (5 x	2= 10 Marks)				
11.	What are the basic co	omponents of a LP model	?	CO1-U			
12.	What is degenerate basic feasible solution in transportation problem? CO2-U						
13.	Differentiate between CPM and PERT. CO3-U						
14.	What is buffer stock? CO4-U						
15.	What is Queue discip	oline? Write its types.		CO5-U			

16. (a) Maximize $Z = 2X_1 + X_2$ CO1- App (16) subject to $4X_1 + 3X_2 \le 12$, $4X_1 + X_2 \le 8$, $4X_1 - X_2 \le 8$, $X_1, X_2 \ge 0$.

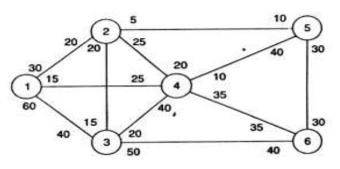
- Or
- (b) Food X contains 6 units of vitamin A per gram and 7 units of vitamin CO1- App (16) B per gram and costs 12 paise per gram. Food Y contains 8 units of vitamin A per gram and 12 units of vitamin B per gram and costs 12 paise per gram. The daily minimum requirement of vitamin A and vitamin B is 100 units and 120 units respectively. Find the minimum cost of product mix by the simplex method.

17. (a) Four factories supply the products to four stores. Unit transportation CO2- App (16) cost in rupees from each factory to each store is given in the table. Find out the Optimum transportation cost. (Use VAM and MODI methods).

Stores							
	1	2	3	4	Production Capacity		
Factory - A	04	06	08	13	50		
Factory– B	13	11	10	08	70		
Factory – C	14	04	10	13	30		
Factory – D	09	11	13	08	50		
Demand	25	35	105	20			

(
L	Л	

(b) A small garment making unit has five tailors stitching five different CO2- App (16) types of garments All the five tailors are capable of stitching all the five types of garments. The output per day per tailor and the Profit (Rs.) for each type of garment are given below:


Tailors	Garments					
	1	2	3	4	5	
А	7	9	4	8	6	
В	4	9	5	7	8	
С	8	5	2	9	8	
D	6	5	8	10	10	
Е	7	8	10	9	9	
Profit (Rs.)per garment	2	3	2	3	4	

Which type of garment should be assigned to which tailor in order to maximize profit, assuming that there are no other constraints?

18. (a) A project involves 14 activities. Construct a network. Find out the CO3 Ana (16) critical path and project duration.

S.No Activity		Immediate	Duration			
		Predecessor (s)	(Months)			
1	А	-	2			
2	В	-	6			
3	С	-	4			
4	D	В	3			
5	Е	А	6			
6	F	А	8			
7	G	В	3			
8	Н	C,D	7			
9	Ι	C,D	2			
10	J	Е	5			
11	K	F,G,H	4			
12	L	F,G,H	3			
13	М	Ι	13			
14	Ν	J,K	7			
Or						

(b) Consider the pipe network shown in figure which shows the flow CO3- Ana (16) capacities between various pairs of locations in both ways. Find the maximal flow from Node-1 to Node-6.

19. (a) The annual demand for a component is 7200 units. The carrying cost is CO4- App (16) Rs.500/unit/year, the ordering cost is Rs.1500 per order and shortage cost is Rs.2000/unit/year. Find the optimal values of economic order quantity, maximum inventory, maximum shortage quantity, cycle time (t), inventory period (t₁) and shortage period (t₂).

(b) The maintenance cost and resale value per year of a machine whose CO4 Ana (16) purchase price is Rs. 7000 is given below

Year	1	2	3	4	5	6	7	8
Maintenance	900	1200	1600	2100	2800	3700	4700	5900
cost in Rs.								
Resale value	4000	2000	1200	600	500	400	400	400
in Rs.								

When should the machine be replaced?

- 20. (a) Customers arrive at the first class ticket counter of a theatre at the rate CO5-App (16) of 12 per hour. There is one clerk serving the customers at the rate of 30 per hour.
 - (i) What is the probability that there is no customer in the counter?

(ii) What is the probability that there are more than two customers in the counter?

(iii) What is the probability that there is no customer waiting to be served?

(iv) What is the probability that a customer is being served and nobody is waiting?

Or

(b) Reduce the following game by dominance and find the game value:

CO5-App (16)

Player B								
		Ι	II	III	IV			
	Ι	3	2	4	0			
Player A	II	3	4	2	4			
	III	4	2	4	0			
	IV	0	4	0	8			