Reg. No. :

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Fourth Semester

Electronics and Communication Engineering

15UMA424 - PROBABILITY AND RANDOM PROCESSES

(Common to Biomedical Engineering)

(Regulation 2015)

(Statistical tables may be permitted)

Duration: Three hours

Maximum: 100 Marks

PART A - (10 x 1 = 10 Marks)

1.	If X is the discrete random variable having the probability density						CO1-App
	function, then fine						
		Х	-2	0	1		
		P(X)	8k	2k	3k		
	(a) 1/13	(b) -1.	/13	(c) 1	·	(d) -1	
2.	Six coins are tossed 6,400 times. What is the probability of getting 6				6	CO1-R	
	holds, x times?						
	(a) e^{-100x}	$(b)\frac{1}{x}\epsilon$	-100x	(c) $\frac{1}{x!}e^{-b}$	a-b	(d)None of	of these
3.	Cov(x+a, y+b) =						O2-App
	(a) $abCov(x, y)$	a) $abCov(x, y)$ (b) $(a + b)Cov(x, y)$ (c) $Cov(x, y)$				(d) 0	
4.	The regression coefficient $b_{XY} = 0.2337$ and $b_{YX} = 0.6643$, then the					e	CO2-R
	correlation coeffic						
	(a) 0.498	(b) 0.1	394	(c) 0.2	39	(d) 0.25	
5.	Differences of tw	wo independent Poisson processes is					CO3-R
	(a) not Poisson process			(b) a C	aussian process		

(c) a Binomial process (d) a sine wave process

6.	A random process $\{X(t)\}$ is said to be a first order stationary process if $\mu =$								
	(a) constant (b) function	of t							
	(c) function of τ (d) none								
7.	In auto correlation function	CO	04-R						
	(a) $R(\tau)$ is even (b) $R(\tau)$ is odd (c) $R(\tau)$ is both e	ven and odd (d) None of the	hese						
8.	ne spectral density function of a real random process is								
	(a) an odd function (b) neither odd nor	even function							
	(c) an even function (d) straight line fur	action							
9.	The convolution form of the output Y(t) of a linear time invariant CO5								
	system with the input X(t) and the system weighting function h(t)								
	(a) $\int_{-\infty}^{\infty} h(u) du$ (b) $\int_{-\infty}^{\infty} h(u) X(t - t)$	u) du							
	$(c)\int_{-\infty}^{\infty}h(u) y(t-u) du \qquad (d)\int_{-\infty}^{\infty}X(t-u) du$	u							
10.	If $S_{XX}(w) = \frac{N_0}{2}$ and $H(w) = 1$ then $S_{YY}(w) =$	CO	05-R						
	(a) N_0 (b) $\frac{N_0}{2}$ (c) $\frac{2}{N_0}$ (d) None of the s								
	PART - B (5 x 2 = 10 Marks)								
11.	. State Baye's theorem	C	01-R						
12.	If the joint probability density function of (X $f(x, y) = e^{-(x+y)}, x \ge 0, y \ge 0$ find E (XY).	(,Y) is given by Co	02-Е						
13.	State Chapman-Kolmogorov theorem.								
14.	Find Mean of the random process X(t),								
	where $R(\tau) = 16 + \frac{9}{1+16\tau^2}$								
15.	Describe a linear system.	CO	05-R						
PART – C (5 x 16= 80Marks)									
16.	(a) (i) A continuous random variable X has a PDF $f(x)$	$= 3x^2, 0 \leq \text{CO1-App}$	(8)						

16. (a) (i) A continuous random variable X has a PDF $f(x) = 3x^2, 0 \le \text{COI-App}$ (8) $x \le 1$. Find the value of K and α such that (1) $P(X \le K) = P(X > K)$ (2) $P(X > \alpha) = 0.1$ (ii) The distribution function of the random variable X is given by CO1-App (8) F(x) = 1- (1 + x) e^{-x}, x ≥ 0 . Find the density function, mean and variance of X.

Or

(b) (i) Derive the moment generating function of Poisson distribution CO1-App (8) and hence obtain its mean and variance.

(ii) State and prove memory less property of exponential CO1-App (8) distribution.

- 17. (a) (i) The joint pdf of random variable (X, Y) is given by CO2-App (8) $f(x, y) = kxye^{-(x^2+y^2)}, x > 0, y > 0$. Find the value of k and also prove that X and Y are independent. (2)
 - (ii) The joint probability density function of random variable X CO2-App (8) and Y is given by

$$f(x, y) = 4xye^{-(x^2+y^2)}, x > 0, y > 0.$$

Check whether X and Y are independent or not..

Or

- (b) (i) The joint probability mass function of (X,Y) is given by CO2-Ana (8) p(x,y) = k(2x + 3y), x = 0, 1, 2; y = 1, 2, 3. Find the value of k and all the marginal probability distribution function. Also find the probability distribution of (X + Y).
 (ii) The regression lines for two random variables X and Y are CO2-Ana (8) 8X 10Y + 66 = 0 and 40X 18Y = 214. Find
 (a) the mean values of X and Y
 (b) the correlation coefficient between X and Y.
- 18. (a) (i) Consider the random process X(t) = Ycos ωt, t≥ 0, Where ω CO3-Ana (8) is a constant and Y is a uniform random variable over (0,1). Find the auto correlation function R(t, τ) of X(t).

(ii) The probability distribution of the process $\{X(t)\}$ is given by CO3-Ana (8)

$$P[X(t) = n] = \begin{cases} \frac{(at)^{n-1}}{(1+at)^{n+1}}, & n = 1, 2, 3, \dots \\ \frac{at}{1+at}, & n = 0 \end{cases}$$

Show that it is not stationary.

Or

- (b) Three boys A, B, C are throwing ball to each other. A always CO3-Ana (16) throws the ball to B and B always throws the ball to C, but C is just as equally likely to throw the ball to B or to A. Show that the process is Markovian. Find the transition matrix and classify the states.
- 19. (a) State and Prove the Wiener–Khinchine theorem CO4-App (16)

Or

(b) (i) The power spectral density of the random process is given by CO4-App (8) $S_{XX}(\omega) = \begin{cases} S_0 & -a < \omega < a \\ otherwise \end{cases}$ Find the autocorrelation function and also the mean square value. (ii) The cross-power spectrum of real random processes CO4-App (8) {X(t)} and {Yt} is given by $S_{XY}(\omega) = \begin{cases} a + bj\omega & -1 < \omega < 1 \\ 0 & otherwise \end{cases}$ Find the cross-correlation function .

20. (a) (i) A random process {X(t)} is the input to a linear system whose CO5-App (8) impulse response is h(t) = 2e^{-t}, t > 0. If the autocorrelation function of the process is R_{XX}(τ) = e^{-2|τ|}, find the power spectral density of the output process Y(t). (ii) If {X(t)} is a WSS process with auto correlation function CO5-App (8) R_{XX}(τ), then prove that the power spectral density of the output {Y(t)} is S_{YY}(w) = S_{XX}(w)|H(w)|²

Or

(b) A Linear system is described by the impulse response CO5-App (16) $h(t) = \beta e^{-\beta t} u(t)$. Assume an input process whose auto correlation function is $B\delta(\tau)$. Find the mean and Auto Correlation function of the output process