С		Reg. No. :										
Question Paper Code: 51Z25												
M.E. DEGREE EXAMINATION, NOV 2018												
First Semester												
Structural Engineering												
15PMA125 - APPLIED MATHEMATICS FOR STRUCTURAL ENGINEERING												
(Regulation 2015)												
Du	Duration: Three hours Maximum: 100 Ma									1ark:	5	
Answer ALL Questions												
PART - A $(5 \times 1 = 5 \text{ Marks})$												
1.	$F\left(e^{-x^{2}/2}\right) =$										CC	01 - R
	(a) $e^{s^2/2}$	(b) $e^{-x^2/2}$		(c) e ⁻	s ² /2			(d)	$e^{x^{2}/2}$	2		
2.	For a two point Gauss Hermite Quadrature then the weight is CO2)2 -R	
	(a) -0.8862	(b) 0.8862		(c) 0. ²	7071			(d)	- 0.	7071	l	
3.	Suppose 'f' is independent of 'y' then the solution of Euler's Equation is								CC)3- R		
	(a) $\frac{\partial F}{\partial y^{1}} = c$	(b) $\frac{\partial F}{\partial y} = c$		(c) $\frac{\partial I}{\partial x}$	$\frac{7}{1} = c$			(d)	$\frac{\partial F}{\partial x}$	= <i>c</i>		
4.	To find the smallest eigen values of the matrix then use CO4)4 -R	
	(a) Faddeev-Lever		(b) Power Method									
	(c) Rayley- Ritz Method (d) Approximation Method											
5.	Angle between the regression lines are parallel then									CC)5- R	
	(a) $\theta = 0$	(b) $\theta = \frac{\pi}{2}$		(c) <i>θ</i>	$=\frac{\pi}{4}$			(d)	$\theta = x$	π		

$PART - B (5 \times 3 = 15 \text{ Marks})$

- 6. Write down the One dimensional wave equation and explain the variables involved in it.
- CO1-U 7. Define Rayleigh quotient of a Hermitian matrix. CO2-U Obtain the Euler's equation for the extremals of the functional 8. CO3-App $\int_{-\infty}^{\infty} \left(y^{2} - yy' + y'^{2}\right) dx .$
- 9. Define principle of least square. CO4-U
- What are maximum likelihood estimators? 10.

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

Using the Laplace transform method, solve the IBVP described as 11. CO1- App (a) (16)

> PDE: $u_{yy} = \frac{1}{c^2} u_{tt} - \cos \omega t$, $0 \le x < \infty$, $0 \le t < \infty$ BCs: u(0, t) = 0, u is bounded as x tends to ∞ ICs: $u_t(x, 0) = u(x, 0) = 0$.

Or

A string is stretched and fixed between two fixed points (0, 0) and CO1- App (b) (16)(1, 0). Motion is initiated by displacing the string in the form

 $u = sin\left(\frac{\pi x}{t}\right)$ and released from rest at time t=0.

Find the displacement of any point on the string at any time t.

12. (a) (i) By relaxation method, solve CO₂- App (8) 12 x + y + z = 31, 2x + 8y - z = 24, 3x + 4y + 10 z = 58. (ii) Solve the equation by Choleski method CO₂- App (8)

4x + 6y + 8z = 0, 6x + 34y + 52z = -160, 8x + 52y + 129z = -452.

Or

(b) (i) Evaluate CO₂- App (8) $\int_{1}^{2} \int_{x+y}^{2} \frac{dxdy}{x+y}$ by Gaussian quadrature formula.

CO5-U

(ii) Evaluate $\int_{1}^{2} \frac{dx}{1+x^{3}}$ by Gaussian three point formula. (8)

13. (a) Find the external of the functional, $\int_{0}^{\frac{\pi}{2}} \left[2xy + \left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} \right] dt, \quad \text{given } x(0)=0, \ x(\pi/2)=-1, \ y(0)=0$ $,y(\pi/2)=1.$ (16)

Or

- (b) Show that the curve which extremizes the functional CO3-App (16) $I = \int_{0}^{\frac{\pi}{4}} (y^{11^{2}} - y^{2} + x^{2}) dx \text{ under the conditions}$ $y(0) = 0, y'(0) = 1, y(\frac{\pi}{4}) = y'(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}.$ (a) Using power method find all the Eigen values of CO4 - App (16)
- 14. (a) Using power method find all the Eigen values of CO4 App (16) $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ Or

$$A = \begin{pmatrix} -2 & -2 & -4 \\ 2 & 3 & 2 \\ 3 & 2 & 5 \end{pmatrix}$$
 by Faddeev-Leverrier method.

Find the resolvent of the matrix

(b)

15. (a) Find the maximum likelihood estimate for the parameter λ of a CO5-App (16) distribution on the basis of a sample of size n. Also find its variance. Show that the sample mean \overline{x} is sufficient for estimating the parameter λ of the Poisson distribution.

Or

CO4 - App

(16)

(b) (i) In a trivariate distribution $r_{12} = 0.7$, $r_{13} = r_{23} = 0.5$. Find the CO5-App (8) partial correlation coefficient $r_{12.3}$ and multiple correlation coefficients $R_{1.23}$.

(ii) In a random sampling from normal population $N(\mu, \sigma^2)$, find CO5-App (8) the maximum likelihood estimators for μ when σ^2 is known.