С		Reg. No. :			
		Question Paper	r Code: 53802		
	B.E.	/ B.Tech. DEGREE EX	XAMINATION, NOV	/ 2018	
		Third Se	emester		
		Information	Technology		
	15UIT	302 - DATA STRUCT	URES AND ALGOR	ITHMS	
		(Regulation	on 2015)		
Duration: Three hours Answer AL		Maxin Questions	num: 100 Marks		
		PART A - (5 x	1 = 5 Marks)		
1.	is very useful i retrieved in reverse	in situation when data ha	ave to stored and then	CO1	
	(a) Stack	(b) Queue	(c) List	(d) Linked list	
2.	The property of bina	ary tree is		CO2	
	(a) The first subset i	s called left sub tree (t	o) The second sub tree	e is called right sub tree	
	(c) The root cannot	contain NULL (c	d) Any note in a tree of	can have almost 2 childr	
3.	In a Priority queue,	insertion takes place at _		CO3	
	(a) Front, rear end	(b) Only at rear end	(c) Only at front en	d (d) Any positio	
4.	The search technique that takes 0 (log n) time to find a data is CO4				
	(a) Linear search	(b)Binary search	(c)Hashing	(d) Tree search	
5.	Topological sort car	be implemented by		CO5	
	(a) Using depth first	search	(b) Using breadth f	irst search	
	(c) Using depth and	breadth first search	(d) None of the me	ntioned	

6. List the applications of Queue.

CO1- R

7. Traverse the given tree using in order, Preorder and post order traversals CO2- App

8.	Wha	at are the properties of binary heap?	CO3- R	
9.	Wri	te the importance of hashing.	CO4- R	
10.	Diff	Serentiate BFS and DFS	CO5- R	
		PART – C (5 x 16= 80Marks)		
11.	(a)	(i) Write an algorithm for Push and Pop operations on Stack using Linked List.	CO1- App	(8)
		(ii) Explain the addition and deletion operations performed on a circular queue with necessary algorithms.	CO1- App	(8)
		Or		
	(b)	(i) Write the insertion and deletion procedures for singly linked lists.	CO1- App	(8)
		(ii) Write the algorithm for the deletion and reverse operations on doubly linked list.	CO1- App	(8)
12.	(a)	(i) Construct an expression tree for the expression A+(B-C)*D+(E*F)	CO2- App	(8)
		(ii) Explain the algorithm to convert a postfix expression into an expression tree with an example.	CO2- App	(8)
		Or		

	(b)	(i) Write the algorithm for pre-order and post-order traversals of a binary tree.	CO2- Ana	(8)		
		 (ii) Suppose the following sequences list nodes of a binary tree T in preorder and inorder, respectively : Preorder : A, B, D, C, E, G, F, H, J Inorder : D, B, A, E, G, C, H, F, J Draw the diagram of the tree. 	CO2- Ana	(8)		
13.	(a)	(i) Describe in detail about the binary heaps. Construct a min heap tree for the following : 4,1,3,2,16,9,10,14,8,7.	CO3- App	(8)		
		(ii) Explain implementation of priority queue.	CO3- App	(8)		
Or						
	(b)	Define AVL tree? Construct AVL tree for following data 1, 2, 3, 4, 8, 7, 6, 5, 11, 10, 12.	CO3- App	(16)		
14.	(a)	(i) Formulate an ADT to perform for the Union and find	CO4-App	(8)		
		operations of disjoint sets.				
		(ii) Describe about Union-by-rank and Find with path compression with code.	CO4-App	(8)		
		Or				
	(b)	(i) Formulate an ADT to implement separate chaining hashing scheme.	CO4-App	(8)		
		(ii) Show the result of inserting the keys 2, 3, 5, 7, 11, 13, 15, 6, 4 into an initially empty extendible hashing data structure with $M = 3$.	CO4-App	(8)		
15.	(a)	(i) Write routines to find shortest path using Dijkstra's algorithm.	CO5-App	(8)		
		(ii) Explain Prim's algorithm to construct a minimum spanning tree from an undirected graph. Or	CO5-App	(8)		
	(b)	Explain BFS and DFS algorithm with example.	CO5-App	(16)		