С		Reg. No. :												
		Question Paper	Cod	le: 5	51Z	26								
M.E. DEGREE EXAMINATION, NOV 2018														
	First Semester													
		Power Electronics	s and	Dri	ves									
	15PMA126 – API	PLIED MATHEMATICS	S FO	R El	LEC	ГRIC	AL	ENG	INE	ERS				
		(Regulation	201	5)										
Duration: Three hours								Maximum: 100 Marks						
		Answer ALL (Quest	tions										
1.	PART - A (5 x 1= 5 Marks) Every matrix of order m x n can be factor into two product of Q CC having vectors of its columns and matrix R)1- R				
	(a) Upper triangular	(b) Lower triangular	(c) <mark>O</mark> I	thog	onal		(d)	Equi	vale	nt			
2.	When will you get unbounded solution in Two-Phase method										CC)2 -R		
	(a) $Z_j = 0$	(b) Zj> 0	(c) Zj	< 0			(d)	Non	e of t	the a	bove		
3.	A random variable X has $E(X) = 1$ and $E(X(X-1)) = 4$ th is						(X)				CC)3- R		
	(a) 5	(b) 4	(c) 6				(d)	3					
4.	What is the classificat	What is the classification of $f_x + 2 f_{xx} = 0$? CO4 -R												
	(a) Parabolic	(b) Ellipse	(c) H	ypert	oolic		(d)	Non	e of t	these	;		
5.	$\nabla^2 u = f(x, y)$ then it is called										CC)5- R		
	(a) Laplace	(1	(b) Poisson											
	(c) One dimensional h	((d) None of these											
		PART – B (5 2	x 3=	15 N	Iarks	5)								
6.	Define Topeplitz matrix with example.										C	01 - U		
7.	Define Feasible Solution.										CC)2-U		

8. If X has the pdf

 $f(x) = \begin{cases} cxe^{-x}, x > 0\\ 0 & otherwise \end{cases}$ Find the value of c and cumulative distribution of X.

- 9. State convergence of the series. CO4-U
- 10. Write down the SFPF for solving Laplace equation. CO5-U

$$PART - C (5 \times 16 = 80 \text{ Marks})$$

11.	(a)	Con	Istru	uct	a Ç)R d	ecomposition for the matrix	CO1- App	(16)
			[0]	1	1	1]			
		4 -	1	0	1	1			
		<i>A</i> =	1	1	0	1			
				1	1	0			

Or

(b) Find the Pseudo inverse of CO1- App (16) $\begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 2 & 2 & 3 \end{bmatrix}$

12. (a) Solve the LPP CO2- App (16) MinimiseZ = $3x_1 + 2x_2 + 2x_3$ Subject to $5x_1 + 7x_2 + 4x_3 \le 7; -4x_1 + 7x_2 + 5x_3 \ge -2; x_1, x_2 \ge 0$

Or

- (b) Use Two Phase method, Solve CO2- App (16) MinimiseZ = $60x_1 + 80x_2$ Subject to $20x_1 + 30x_2 \ge 900;40x_1 + 30x_2 \ge 1200; x_1, x_2 \ge 0$
- 13. (a) (i) Find the M.G.F of Poisson distribution and hence find mean CO3-App (8) and variance

2

(ii) Find the M.G.F of Exponential distribution and hence find CO3-App (8) mean and variance

51Z26

(b) The probability distribution function of a random variable X is CO3-App (16)

$$f(x) = \begin{cases} x, & 0 < x < 1 \\ 2 - x, & 1 < x < 2 \\ 0, & x > 2 \end{cases}$$

Find the MGF and hence find mean and variance.

14. (a) Find the eigen values and eigen functions of CO4 -App (16) $y'' + \lambda y = 0, 0 < x < 1, y(0) = 0, y(1) + y'(1) = 0.$

- (b) Find the DFT of the four point sequence {x(k)}={1, 1, 0, 0} and CO4 -App (16) then calculate inverse DFT of the points. Faddeev-Leverrier method.
- 15. (a) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \quad \text{in } 0 < x < 1, t \ge 0 \text{ given that } u(x, 0) = 0, u(0, t) = 0,$ u(1, t) = t.Compute u for the time step with h = 1/4 by Crank-Nicholson method Or
 - (b) Solve the Poisson equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the CO5-App (16) square mesh with sides x = 0 = y, x = 3 = y with u = 0 on the boundary and mesh length is 1.

51Z26