Reg. No.:					

Question Paper Code: 47602

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Seventh Semester

Instrumentation and Control Engineering

14UIC702 - DIGITAL CONTROL SYSTEM

(Regulation 2014)

Duration: Three hours Maximum: 100 Marks

Answer ALL Questions

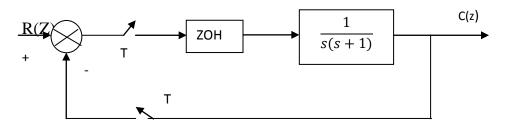
PART A - $(10 \times 1 = 10 \text{ Marks})$

1.	A continuous-time periodic signal x(t), having a period T, is convolved with itself. The						
res	sulting signal is						
	(a) Not periodic	(b) Periodic having a period T					
	(c) Periodic having a period 2T	(d) Periodic having a period T					
2.	. In the sampled data control system, the controller output is given to						
	(a) Comparator (b) Process	(c) Final control element	(d) Zero order hold				
3.	Shanon's sampling theorem states						
	(a) $f_s \ge f_m/2$ (b) $f_s \le f_m/2$	(c) $f_s \ge 2f_m$	(d) $f_s \leq 2f_m$				
4.	The holding device which uses n th order polynomial for approximation is called						
	(a) (n+1) th order holding	(b) (n-1) th order holding de	vice				

(d) Zero order holding device

5. Z-transform of 6 δ (k+2) is

(c) nth order holding device


(a)
$$\frac{6z}{z-2}$$
 (b) $6z^2$ (c) $2z^6$

6. The stable	region of Z pla	ne is				
(a) Inside the unit circle			(b) Outside the unit circle			
(c) Left half plane			(d) Right half plane			
7. For the n th	order system, tl	ne number of	state equation	ns will be		
(a) 1	(b) n	((c) $(n+1)/2$	(d) n/2		
8. A state spa	ace model is fur	ndamentally o	different from	transfer function m	odel in account of	
(a) Zer	oes		(b) Si	ngle input & single	output	
(c) Initial conditions			(d) Poles			
9. The veloci	ty form of PID	controller co	mputes			
(a) $m(n-1) - m(n)$			(b) m	(n-1) + m(n)		
(c) m(n) - m(n-1)			(d) m	(n) + m(n+1)		
	eat controller C					
(a) z^{-2}		(b) z^{-1}	(c) z^{-n}		$(d) z^{+1}$	
		PART - B	$3 (5 \times 2 = 10 \text{ N})$	Marks)		
11. Distingui	sh between ana	log and discr	ete signals.			
12. Define ac operation	-	aperture time	e and droop ra	te with respect to sa	ample and hold	
13. State and	prove convolu	tion theorem	in z-transforn	1.		
14. Define C	ontrollability aı	nd observabil	ity in state spa	ace approach.		
15. Why are application		ors preferred	d than conv	entional electric n	notors in contro	
		PART - C	$(5 \times 16 = 80)$	Marks)		
16.(a) With b	lock diagram, d	lescribe a dig	gital temperatu	are control system	(16)	
			Or			
(b) With s	suitable block d	iagram, expla	ain any one ap	oplication of digital	control system. (16)	
2						

- 17. (a) (i) Obtain the inverse Z-transformation of the discrete function $G(z) = \frac{z}{3(Z 0.333)(Z 1)}$ (4)
 - (ii) Derive the expression for the sampled spectra and explain aliasing effect using the frequency domain considerations. (12)

Or

- (b) (i) Derive the transfer function of Zero Order Hold. (8)
 - (ii) Illustrate the significance of various time domain modes of discrete time systems. (8)
- 18. (a) For the sampled data system given below, find the response c(k) for unit step change in input r(k) (16)

Or

- (b) (i) Obtain the modified z-transform of unit ramp function.
 - (ii) Determine the stability using Jury's test for the system with the following characteristic polynomial. (10)

$$\Delta(Z) = Z4 - 1.2Z3 + 0.07Z2 + 0.3Z - 0.08$$

19. (a) (i) Obtain the state space model for the given pulse transfer function in decoupled form. (8)

$$\frac{y(z)}{u(z)} = \frac{2(z+5)}{(z+2)(z+3)(z+4)}$$

(ii) Find state transition matrix $\Phi(k)$ if the system state matrix is given as (8)

$$A = \begin{pmatrix} -3 & 0 \\ 0 & -2 \end{pmatrix}$$

Or

(6)

(b) (ii) Obtain the phase variable form of state model of the following system and find the Controllability of the same (16)

$$y(k+3) + 6y(k+2) + 9y(k+1) + 6y(k) = u(k)$$

20. (a) Derive the digital equivalent of position form of PID algorithm. (16)

Or

b) Design a pole placement controller (using state feedback) for the given digital system with state model,

$$\begin{bmatrix} x_1(k+1) \\ x_1(k+1) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$
The desired closed loop poles should be taken as $0.5 \pm j \ 0.5$ (16)