Question Paper Code: 44023

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Fourth Semester

Mechanical Engineering

14UMA423 - STATISTICS AND NUMERICAL METHODS

(Regulation 2014)

Duration: Three hours

Maximum: 100 Marks

Answer ALL Questions

(Statistical Tables are permitted)

PART A - (10 x 1 = 10 Marks)

- 1. The null and alternative hypotheses divide all possibilities into
 - (a) two sets that overlap
 - (b) two non-overlapping sets
 - (c) two sets that may or may not overlap
 - (d) as many sets as necessary to cover all possibilities
- 2. The chi-square goodness-of-fit test can be used to test for
 - (a) significance of sample statistics (b) difference between population means (d) probability (c) normality
- 3. Mean square between the samples is given by (a)SSE/c-1 (b) SSE/n-c (c)SSC/c-1(d)SSC/n-c
- What is main advantage of Latin square design over Randomized Block Design 4.
 - (a) Controls the effect of one extraneous variables
 - (b) Controls the effect of two extraneous variables
 - (c) No control over the variables
 - (d) Limited Control over the variables
- 5. 2x2 Latin square is not possible. Why?
 - (a) Comparison is not possible
 - (c) Mean Squared Error possible (d) Sum of Square is possible

(b) One Comparison is not possible

6.	The order of Convergence of Newton-Raphson's method is					
	(a) 1	(b) 0	(c) 2	(d) 3		
7	formula is	used to find the unk	nown values of 'y' for s	some x which lies at	the	
enc	l of the tabular values					
	(a) Newton's Fo	rward	(b) Lagrange's			
	(c) Newton's divide	d difference	(d) Newton's Backward			
8. I	For what type of data	the divide and diffe	erent table is used			
	(a) Equal interva	al	(b) Unequal interval			
	(c) Marginal interva	1	(d) All type of interval			
9.	Newton's forward interpolation formula used only for intervals.					
	(a) Un equal intervals		(b) In-Equidistance intervals			
	(c) Equidistance	intervals	(d) Anisomet	ric Intervals		
10.	The Gaussian quadrature formula is also knows as					
	(a) Forward for	m	(b) Divided	different form		
	(c) Three point	form	(d) Backward	l form		
		PART - B	(5 x 2 = 10 Marks)			
11.	What is a null hypot	hesis?				

- 12. Write the differences between RBD and LSD.
- 13. Solve the following system of equations, using Gauss Jordan elimination method 2x + y = 3, x 2y = -1.
- 14. What is the assumption we make when Lagrange's formula is used?
- 15. Write the Gaussian three points Quadrature formula

PART - C ($5 \times 16 = 80$ Marks)

16. (a) A real estate agency wants to compare the appraised values of single-family homes in two cities in Michigan. A sample of 60 listings in Lansing and 99 listings in Grand Rapids yields the following results (in thousands of dollars):

	Lansing	Big Rapids
\overline{X}	191.33	172.34
S	32.60	16.92
n	60	99

Is there evidence of a significant difference in the average appraised values for singlefamily homes in the two Michigan cities? Use 0.05 level of significance. (16)

Or

- (b) Before an increase in excise duty on tea, 800 persons out of a sample of 1000 persons were found to be tea drinkers. After an increase in duty, 800 people were tea drinkers in a sample of 1200 people. Using standard error of proportion, state whether there is a significant decrease in the consumption of tea after the increase in excise duty? (Z_{α} at 5% level 1.645, 1% level 2.33). (16)
- 17. (a) Five doctors, each test five treatments for a certain disease and observe the number of days each patient takes to recover. The results are as follows: Given Recovery time in days.

	Treatments				
Doctors	1	2	3	4	5
А	10	14	23	19	20
В	11	15	24	17	21
С	9	12	20	16	19
D	8	13	17	17	20
E	12	15	19	15	22

Discuss the significant difference between (i) doctors (ii) treatments. (16)

Or

- (b) Compare and contrast the Latin square design with the Randomised Block Design. (16)
- 18. (a) (i) Using Newton Raphson method, solve $x \log_{10} x = 12.34$ taking the initial value x_0 as 10. (8)
 - (ii) Solve by Gauss elimination method the following system 3x + 4y + 5z = 18; 2x - y + 8z = 13; 5x - 2y + 7z = 20. (8)

Or

- (b) (i) Solve the system of equations by Gauss-Jordan method x + 2y + z = 3, 2x + 3y + 3z = 10, 3x - y + 2z = 13. (8)
 - (ii) Solve the following system of equations by Gauss-Seidel method 10x 5y 2z = 3, 4x 10y + 3z = -3, x + 6y + 10z = -3. (8)
- 19. (a) Using Newton's forward interpolation formula, find the polynomial f(x) satisfying the following data. Hence evaluate f(x) at x = 5. (16) $x : 4 \ 6 \ 8 \ 10$

$$f(x): 1 \ 3 \ 8 \ 10$$

44023

(b) Using Newton's divided difference, find f(2), f(8) and f(15) from the following data:

$$X$$
:
 4
 5
 7
 10
 11
 13
 $f(x)$:
 48
 100
 294
 900
 1210
 2028
 (16)

20. (a) (i) By dividing the range into 10 equal parts, evaluate $\int_{0}^{\pi} \sin x \, dx$ by Trapezoidal rule.(8)

(ii) Evaluate
$$\int_{-1}^{1} \frac{x^2}{1+x^4} dx$$
 by using three points Gauss quadrature formula. (8)

Or

(b) The population of a certain town is given below. Find the rate of growth of the population in 1931, 1941, 1961 and 1971.

Year x	:	1931	1941	1951	1961	1971
Population	y :	40.62	60.80	79.95	103.56	132.65

(16)