A	. I	Reg. No. :										
	Ques	tion Paper	Cod	e: 53	306							
	B.E. / B.Tech.	DEGREE EX	AMIN	JATIO	DN, N	JOV	201	8				
		Third Set	meste	r	,							
	Electr	ical and Electr	onics	Engin	eerin	g						
	15UEE3	06 -DIGITAL	LOG	IC CI	RCU	ITS						
		(Regulatio	on 201	5)								
Dur	ation: Three hours	Answer ALL	Oues	tions	Ma	ximı	um:	100 1	Mark	S		
	P	ART A - (10 x)	1 = 1() Marl	ks)							
1.	After counting 0, 1, 10, 11, the next binary number is $(10 \times 1 - 10 \text{ Marks})$							CC)1-U			
	(a) 12	(b)100	(c	:)101				(d)	110			
2.	The expansion of ECL is										CC)1 - 1
	(a) Emitter-collector logic(c) Emitter-coupled logic	(b) Emitter-complementary logic(d) Emitter Common logic										
3. A combinational circuit that selects one from many inputs											CC)2- U
	(a) Encoder	(b) Decoder	r (c	e) Den	nultip	lexe	r	(d)	Mul	tiple	xer	
4.	Full adder has										CC)2- F
	(a) 1 inputs	(b) 2 inputs	(c	e) 3 inj	puts			(d)	4 inj	outs		
5.	When both inputs are high, then output of JK flip-flop will be							C	D 3- (
	(a) 0	(b) 1	(c	e) No d	chang	ge		(d)	Tog	gle		
6.	Flip-flop outputs are always (a) Complimentary	(b) Same									CC) 3- U
	(c) Independent of each other	(d) Same as	s prev	ious ir	nput							

7.	Output state in asynchronous sequential logic circuit changes when			CO4-U		
	(a) Input changes	(b) Clock pulse is high				
	(c) Input and clock pulse change	(d) Clock pulse is low				
8.	PAL has			CO4- R		
	(a) Fixed AND array and Fixed OR array					
	(b) Fixed AND array and Programmable OR array					
	(c) Programmable AND array and Fixed OR array.					
	(d) Programmable AND array and Programmable OR array.					
9.	VHDL stand for			CO5- R		
	(a) Verilog hardware description language					
	(b) VHSIC hardware description language					
	(c) Very hardware description language					
	(d) VMEbus description language	2				
10.	Each unit to be modeled in a VHI		CO5- R			
	(a) Behavioural model	(b) Design architecture				
	(c) Design entity	(d) Structural model				
	PA	RT – B (5 x 2= 10 Marks)				
11.	Write the advantages of Gray cod	e over other binary codes.	CO1- U			
12.	Compare minterms and maxterms in Boolean functions.		CO2- U			
13.	Write the truth table for T flipflop.		CO3- R			
14.	Differentiate Static – 1 and Static – 0 hazards.		CO4- R			
15.	List the different modeling techni	ques available in VHDL programming	. CO5- R			
	P	PART – C (5 x 16= 80 Marks)				
16.	(a) (i) Construct the hamming by using odd parity.	code for the information code 1011_2	CO1-C	(12)		
	(ii) Convert 152_{10} to its equivalue.	CO1-App	(4)			
	Or					
	(b) (i) Convert 1100101_2 to	its equivalent decimal, octal and	CO1-App	(4)		

hexadecimal value.

		(ii) Discuss the features and characteristics of TTL, ECL and CMOS logic families.	CO1-U	(12)			
17.	(a)	(i) Minimize the following Boolean expression using K-map and realize it using the basic gates. $Y = \Sigma_m (1,3,5,9,11,13)$	CO2-App	(12)			
		(ii) Write the limitations of K-Map in minimizing the Boolean functions.	CO2-U	(4)			
	Or						
	(b)	(i) Design and realize full adder using basic logic gates.	CO2-App	(8)			
		(ii) Design and realize 4:1 multiplexer using basic logic gates.	CO2-App	(8)			
18.	(a)	Design and describe the operation of bidirectional shift register. Or	CO3-Ana	(16)			
	(b)	Design and realize 3 bit UP mode synchronous counter using JK flip-flops.	CO3-C	(16)			
19.	(a)	(i) Design an Asynchronous sequential circuit with two inputs x1 and x2 and with one output z. Initially both inputs are equal to zero. When x1 changes from 0 to 1, then $Z = 1$ and when x2 changes from 0 to 1, then $Z = 0$ and $Z=0$ otherwise.	CO4-C	(12)			
		(ii) Compare fundamental mode and pulse mode in asynchronous sequential logic circuits.	CO4-U	(4)			
		Or					
	(b)	Realize the following Boolean functions using PLA and PAL. $Y_1 = \Sigma_m (1,2,4,5,6)$, $Y_2 = \Sigma_m (0,1,6,7)$, $Y_3 = \Sigma_m (2,6)$	CO4-C	(16)			
20.	(a)	(i) Compare Sequential programming and concurrent programming.	CO5-U	(4)			
		(ii) Illustrate RTL design using VHDL with the help of an example.	CO5-Ana	(12)			
	<i></i>	Or					
	(b)	(i) Write a HDL code for realizing JK FF in behavioral modeling.	CO5-C	(8)			
		(ii) Write a HDL code for realizing half adder in behavioral modeling.	CO5-C	(8)			