Reg.	No.	:
------	-----	---

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018									
Fourth Semester									
Electrical and Electronics Engineering									
15UEE403- CONTROL SYSTEMS									
(Regulation 2015)									
Dur	ation: Three hours		Maximum:	100 Marks					
PART A - $(10 \text{ x } 1 = 10 \text{ Marks})$									
1.	A field F is said to be	e SOLENOIDAL if		CO1- R					
	(a) CURL F=0	(b) DIV F=0	(c) $\nabla^2 F = 0$	$(\mathbf{d})\int \mathbf{F}.\mathbf{d}\mathbf{l}=0$					
2.	Inelectr	ical signal is converted in	to angular motion.	CO1- R					
	(a)Series motor	(b) Generator	(c) Servomotor	(d) Shunt motor					
3.	The unit of magnetic	flux density is		CO2- R					
	(a) Henry/m	(b) Ampere/m	(c) Coulomb/m	(d) Tesla					
4.	For a second-order	system with the close	ed-loop transfer function	on CO2- R					
	$G(s) = \frac{9}{s^2 + 4s + 9}$ the	settling time for 2-percer	rnt band, in seconds, is						
	(a) 1.5	(b) 2.0	(c) 3.0	(d) 4.0					
5.	The Gain Cross Ove the open loop transfe	r Frequency is the freque r function is	ncy at which the phase	of CO3- R					
	(a) 90°	(b) Greater than 180°	(c) Less than 180°	(d) 180°					
6.	Example of super par	ramagnetic materials is		CO3- R					
	(a) iron		(b) cobalt						
	(c) oxides		(d) magnetic tape						
7. Location of roots on the imaginary axis makes the system :				CO4- R					
	(a) Stable	(b) Unstable	(c) Marginally stable	(d) Linear					

8.	Uni	t of Poynting vect	tor is					CO4- R
	(a)	VA/m	(b) VA	((c) V.	A/m^2	(d) Watt/1	n
9.	If <i>X</i> (0) is initial value, solution of state equation is						CO5- R	
	(a) <i>A</i>	$\operatorname{A} e^{At} X(0)$	(b) $e^{At} X(0)$	((c) At	$e^{At}X(0)$	(d) $\operatorname{t} e^{At} X($	0)
10.	Which mechanism in control engineering implies an ability to measureCO5- Rthe state by taking measurements at output?						CO5- R	
	(a) (Controllability		((b) O	bservability		
	(c)	Differentiability		((d) A	daptability		
			PART – B ($5 \ge 2 = 10$	Marks)		
11.	Wha	at are synchros? .	•		, and the second s	,	(CO1- R
12.	. Write the transfer function of lag-lead compensator				CO2- R			
13.	. Define Gain margin.			CO3- R				
14.	. State Routh stability criterion.			CO4- R				
15.	Giv	e the properties of	f conductors				(CO5- R
			PART – C	C (5 x 16=	80Ma	rks)		
16.	(a)	closed surface	flux of $\vec{D} = r^2 \cos^2 r$ of the cylinder $0 \le r$ yeen them for this cas	$z \leq 1, r =$			CO1- App	(16)
			Or					
	(b)	State and prove	Gauss law with appli	ications			CO1- App	(16)
17.	(a)		response of second of all the time domain s	-		bjected to unit	CO2- App	(16)
			Or					
		~ .						<i></i>

(b) State and prove Ampere's circuital law with applications. CO2- Ana (16)

18. (a) The open loop transfer function of a control system with unity CO3- Ana (16) feedback is given by

$$s(1+0.02s)(1+0.2s)$$

Sketch the Bode plot and determine Phase margin and gain margin. Comment on the stability.

Or

(b) The open loop transfer function of a unity feedback system is CO3- Ana (16) given by

 $G(S) = \frac{1}{S(S+1)(2S+1)}$. Sketch the polar plot and determine the

gain margin and phase margin.

19. (a) Derive the Poynting vector from Maxwell's equations and explain CO4- U (16) power of flow.

Or

- (b) Explain the procedure for the design of the lag compensator based CO4- Ana (16) on frequency response approach using bode plot.
- 20. (a) Determine the canonical state model of the system, whose transfer CO5-U (16) function is $T(S) = \frac{2(S+5)}{(S+2)(S+3)(S+4)}$ Or
 - (b) Analyze the controllability and observability of a linear time CO5-U (16) invariant system characterized by the state equation,

 $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \text{ and output equation,}$ $Y(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$