Reg. No.:					

Question Paper Code: 44303

B.E. / B.Tech. DEGREE EXAMINATION, NOV 2018

Fourth Semester

	rourt	ii Semestei				
	Electrical and El	ectronics Engineering				
	14UEE403 - TRANSMIS	SSION AND DISTRIBUTION				
	(Regul	lation 2014)				
	Duration: Three hours	Maximum: 100 Marks				
	Answer A	ALL Questions				
	PART A - (1	$0 \times 1 = 10 \text{ Marks}$				
1.	A bus bar is rated by					
	(a) Current and voltage only	(b) Current only				
	(c) Frequency only	(d) Current and voltage and frequency				
2.	Size of the conductor in the distribution system is found out using					
	(a) Ohm's law	(b) Kirchhoff's law				
	(c) Kelvin's law	(d) Faraday's law				
3.	Overhead lines generally use					
	(a) Copper conductors	(b) All aluminum conductors				
	(c) ACSR conductors	(d) None of these				
4.	Corona occurs between two transmission wires when they					
	(a) Are closely spaced	(b) Are widely spaced				
	(c) Have high potential difference	(d) Carry dc power				
5.	If the power factor of the load decreases	s, the line losses				

(b) Decreases

(d) Initially increases then decreases

(a) Increases

(c) No change

6.	In the a	analysis which of	the following lines s	hunt	ts capacitance is negl	ected?		
	(a) Short transmission lines(c) long transmission			(b) medium transmission(d) medium and long transmission				
7.	The po	wer factor of indu	ıstrial loads is genera	ally				
	(a)	unity	(b) Lagging	(c)	Leading	(d) Zero		
8.	Transn	nission line insula	tors are made of					
	(a)	Glass	(b) Porcelain	(c)	iron	(d) PVC		
9.	The kn	owledge of maxir	num sag is essential	in d	etermining the			
	(a) Ground clearance of the conductor(c) Maximum stress on the conductor				(b) Maximum span of the conductor(d) Load capacity of line			
10.	Ground	ding of system and	d equipment is essen	tial t	for the			
	(a) Safe operation(c) Increase of efficiency			(b) Decrease of fault current(d) None of the above				
			PART - B (5 x 2	= 10) Marks)			
11.	Disting	guish between feed	der and distributor.					
12.	What i	s meant by transp	osition in overhead t	rans	mission line?			
13.	Define	transmission effic	ciency.					
14.	Name	the methods by w	hich the string effici	ency	can be improved.			
15.	Define	sag in power syst	ems.					
			PART - C (5 x 16	5=8	0 Marks)			
16.		aw and explain th		c po	wer systems indicatir	-	el (6)	
			Or					
	(b) Ex	plain with neat di	agram about STATC	COM	I and UPFC.	(1	6)	
17.		-	on for capacitances		single phase transm	nission system a		

- (b) Determine the corona characteristics of a 3 phase line 160 km long, conductor diameter 1.036 cm, 2.44 m delta spacing, air temperature 26.67°, altitude 2440 m corresponding to an barometric pressure of 73.15 cm, operating voltage is 110 kV at 50 HZ.
- 18. (a) Derive the expression for sending end voltage in nominal T method. (16)

Or

- (b) Compute the sending end voltage, current and power factor of a 1 phase, 50 Hz, 76.2 kV transmission line delivering a load of 12 MW at 0.8 pf lag. The line constant are $R = 25 \Omega$, L = 20 mH and capacitance between lines is 2.5 μF . Also find the efficiency and regulation of transmission. Use nominal π method. (16)
- 19.(a) Discuss any two methods to increase the value of string efficiency with suitable sketches. (16)

Or

- (b) (i) Why are insulator used with overhead lines? Discuss the desirable properties of insulator. (8)
 - (ii) A suspension type insulator is having 4 units and the value of pin-to-earth capacitance is C. If the capacitance of top unit is 6C, find the capacitance of each unit to make the string efficiency 100 %. (8)
- 20. (a) A transmission line conductor having a diameter of 19.5 mm weights 0.85 Kg/m. The span is 275 meters. The wind pressure is 39 kg/m^2 of projected area with ice coating of 13 mm. The ultimate strength of the conductor is 8000 kg. Calculate the maximum sag if the safety factor is 2 and the ice weighs 910 kg/m^3 . (16)

Or

- (b) (i) Derive the expression for sag and tension in a power conductor string between two support at equal heights. (8)
 - (ii) A transmission line has a span of 200 meters between level supports. The conductor has a cross-sectional area of 1.29 cm², weighs 1170kg/km and has a breaking stress of 4218 kg/cm². Calculate the sag for a safety factor of 5, allowing a wind pressure of 122 kg/square metre of projected area. What is the vertical sag?