A
\mathbf{A}
4 B

Reg. No.:					

Maximum: 100 Marks

Question Paper Code: 59375

B.E./B.Tech. DEGREE EXAMINATION, NOV 2018

Open elective

Civil Engineering

15UEE975 -PRINCIPLES OF ROBOTICS

 $(Common\ to\ CSE,\ ECE,\ MECH,\ EIE\ ,\ IT\ and\ Chemical\ Engineering)$

(Regulation 2015)

Duration: Three hours

Answer ALL Questions

PART A - $(10 \times 1 = 10 \text{ Marks})$

1.	Drives are also known	as					CO1- R
	(a) Actuators	(b) Controller		(c) Senso	rs	(d) Manip	oulator
2.	Robot is derived from	Czech word	·				CO1- R
	(a) Rabota	(b)Robota		(c) Rebo	ta	(d) Rib	ota
3.	Which gear is used to	reduce speed?					CO2- R
	(a) Bevel gears	(b) Rack and I	Pinion	(c) Spur	gears	(d) Worn	n gears
4.	In Fleming's left-hand	rule the thumb po	oints toward	ls the dire	ction of		CO2- R
	(a) Force	(b) Current		(c) Magn	etic field	(d) Botl	na&b
5.	Lead through methods	referred to as			method.		CO3- R
	(a) Tech by showing	(b) Learning	(c) Comp	liance	(d) Artifi	cial intellig	ence
6.	The digital image captu	ared by a H/W dev	vice called _				CO3- R
	(a) Controller	(b) Computer		(c) Fram	e grabber	(d) Robot	
7.	Kiner hand will be if all joint			nine whe	re the Rol	oot's	CO4- R
	(a) Forward	(b) Reverse		(c) Invers	se (d)	Transform	ation

8.		digital convers hine vision.	ion reduces the number	of levels	used in	CC)4- R
	(a) G	iray	(b) Binary	(c) Bits	(d) Colo	r	
9.		ch of the folloational robots?	owing places would be	e LEAST likely to	include	CC)5- R
	(a) V	Varehouse	(b) Factory	(c) Hospitals	(d) Priva	te homes	S
10.	Tacti	ile array sensor	is a			CC)5- R
	(a) P	osition sensor	(b) Force sensor	(c) Velocity Sensor	(d) Tempera	ature sen	sor
			PART – B (5 x	2= 10 Marks)			
11.	Class	sify the types of	Robotic arm configurat	ions.		CO1-	- Ana
12.	Anal	yze types of gr	ppers.			CO2-	- Ana
13.	Defin	ne accuracy.				CC) 3- U
14.	Defin	ne forward solu	tion in kinematics.			CC)4- U
15.	Outli	ine the diagram	for robot control system			CC)5- U
			PART – C (5	x 16= 80 Marks)			
16.	(a)	Explain in det types.	ails about the Robotic ar	m configuration and i	ts CO	l- U	(16)
			Or				
	(b)	Explain in det	ails about the Degree of	freedom with a neat s	ketch. CO	l-U	(16)
17.	(a)	Analyze the v sketch.	vorking principle of DC	PMMC motor with	a neat CO2	2-Ana	(16)
			Or				
	(b)	Analyze the wasketch.	orking principle of Brus	hless DC Motor with	a neat CO2	2-Ana	(16)
18.	(a)	•	the different stages of amination systems.	machine vision system	m and CO	3-U	(16)
			Or				
	(b)	Define Sensor	and explain about Force	e and torque sensors.	CO	3-U	(16)

19.	(a)	Explain about Joint position control in controller Architecture.	CO4- U	(16)
		Or		
	(b)	Explain about Jacobian in terms of D-H matrices in Robot Kinematics.	CO4- U	(16)
20.	(a)	Explain in details about the Motion Control and its types.	CO5- U	(16)
		Or		
	(b)	Explain in details about Force Control with a neat sketch	CO5- U	(16)